共查询到17条相似文献,搜索用时 62 毫秒
1.
时变转移概率IMM-SRCKF机动目标跟踪算法 总被引:7,自引:0,他引:7
给出了一种交互多模型(interacting multiple model,IMM)算法中Markov转移概率矩阵在线修正的方法,并将平方根容积卡尔曼滤波器(square-root cubature Kalman filter,SRCKF)引入到IMM算法中,提出一种时变转移概率的机动目标跟踪IMM-SRCKF算法。该算法利用当前量测中包含的模式信息,对IMM算法中的转移概率矩阵进行实时递推估计,避免了常规IMM算法中转移概率先验确定的困难,提高了模型切换速度和跟踪精度;同时,SRCKF以目标状态协方差的平方根进行迭代更新,确保了滤波过程中协方差矩阵的对称性和半正定性,改善了数值精度和稳定性。仿真实验结果表明,该算法对机动目标的跟踪性能优于常规的IMM及IMM-CKF算法。 相似文献
2.
基于当前统计模型的机动目标自适应跟踪算法 总被引:2,自引:0,他引:2
当前统计模型及其自适应卡尔曼滤波算法对强机动目标具有很好的跟踪效果,但当机动目标为弱机动和非机动时算法跟踪性能较差。针对这一问题,提出了采用铃形函数作为模糊隶属函数对模型中加速度极值进行修正的自适应滤波算法,调整加速度稳定时的系统过程噪声方差,提高算法的跟踪精度。同时,借鉴强跟踪滤波算法的渐消自适应滤波因子思想,针对加速度突变的情况引入渐消因子对修正的加速度极值进行调节,提高算法在加速度突变情况下的跟踪速度。仿真实验结果表明,算法对弱机动目标和非机动目标的跟踪具有良好的效果。 相似文献
3.
针对Mean Shift算法不能很好地跟踪尺度变化目标的缺点,提出一种将Mean Shift算法和目标几何特征相结合的目标跟踪算法。该方法在Mean Shift框架下提取目标的几何特征,根据目标的面积和型心坐标对跟踪窗的位置和大小进行修正,最后更新Mean Shift的目标模板。通过大量实验仿真证明,改进的算法能很好地跟踪尺度变化的目标,对目标的仿射变化和非刚性的形态变化具有有效性和鲁棒性。 相似文献
4.
5.
提出了一种能够自动选择最优特征、精准描述目标尺寸连续变化的新的序列图像目标跟踪算法.该算法首先计算由RGB分量线性组合而成的区分目标和背景的最优特征,将每一帧榆入图像按照此最优特征转换成目标概率分布图,然后通过检测该图在尺度空间中微分滤波器输出的极值,来决定目标的尺度.最后采用QP_TR信任城算法在尺度空间里和图像平面内快速搜索概率分布图多尺度规范化Laplacian滤波函数的极值,实现了目标的定位,从而完成了跟踪任务.通过与现有算法进行比较,并结合大量真实序列图像进行实验验证,结果表明算法不但能够更准确地描述目标的大小,而且显著提高了跟踪算法的精度. 相似文献
6.
基于当前统计模型的机动目标自适应强跟踪算法 总被引:2,自引:0,他引:2
在当前统计模型卡尔曼滤波算法的基础上,结合升半正态形模糊分布函数特性,提出了一种加速度方差两段函数自适应调整方法,该方法能自适应逼近目标真实机动并进行准确跟踪。给出了最大加速度自调整方法,克服了模型对目标最大加速度的依赖。引入强跟踪滤波算法,增强了模型对突发机动自适应跟踪的能力。理论分析和仿真结果表明,该算法提高了机动模型和系统模式的匹配程度,增强了系统对强机动目标的跟踪能力,并保持对弱机动和非机动目标良好的跟踪性能,且具有运算量小、跟踪精度高、易于工程化实现等优点。 相似文献
7.
用于目标跟踪的自适应粒子滤波算法 总被引:3,自引:0,他引:3
结合粒子滤波算法,提出了一种能够根据目标运动特征自动确定粒子数的自适应目标跟踪算法。为了准确表示后验概率密度,粒子滤波通常使用大量的粒子。当运动预测准确时,用少量的粒子就可以准确估计概率密度函数。提出的算法利用描述概率密度所需的粒子数和运动估计准确程度之间的关系,自动确定粒子滤波所需的粒子数及其提议分布,提高了粒子的使用效率,避免了由于使用过多粒子而增加跟踪器计算量的问题。实验结果表明该算法可以有效地估计出进行目标跟踪所需的粒子数目。 相似文献
8.
自适应卡尔曼滤波技术在动目标跟踪中的应用 总被引:1,自引:1,他引:0
本文论述了自适应卡尔曼滤波法,以及一种用在空中目标角跟踪问题中的算法。自适应卡尔曼滤波技术旨在估计系统状态的同时,根据滤波器的输出,或估算噪声协方差矩阵,或在不太了解噪声的情况下估算卡尔曼增益矩阵。由于模型是线性化的,且被跟踪目标的机动性是未知的,故在跟踪回路中使用自适应方法证明是正确的。 相似文献
9.
基于序列蒙特卡罗方法的多模概率假设密度(probability hypothesis density, PHD)滤波算法及其改进方法,在预测过程中依据多个并行的状态转移模型将大量粒子散布到下一时刻目标所有可能出现的状态空间,从而实现目标状态的捕获。由于这些方法大量使用粒子,造成计算量巨大、算法实时性差。为此,提出了基于无迹变换的多模PHD机动目标跟踪方法。该方法利用最新量测信息获得粒子预测过程中的建议密度函数,从而将粒子聚合在目标最可能出现的状态空间邻域中,充分实现粒子的有效利用。仿真实验表明,论文提出的算法不仅显著减少了多模PHD算法的计算量,而且在一定程度上提高了多模PHD算法的精度。 相似文献
10.
基于Input Estimation的VSIMM机动目标跟踪 总被引:1,自引:0,他引:1
IMM算法的跟踪性能很大程度上取决于模型集的选择.提出了基于InputEstimation的自适应改变模型集的变结构多模型算法IE_VSIMM.对IMM算法输出的状态估计及其误差协方差进行准Kalman滤波,由Input Estimation算法得到的加速度增量估计,可检测目标机动和生成新的模型集.修正过程则由IMM算法在新模型集上对状态估计及其误差协方差进行更正.仿真结果表明IE_VSIMM算法的跟踪性能更好. 相似文献
11.
针对使用模型似然函数比对传统交互多模型(interacting multiple model, IMM)算法模型转移概率实时修正存在奇异的问题, 基于所提修正函数给出一种改进自适应IMM算法。首先, 将白噪声模型与扩展卡尔曼滤波(extended Kalman filter, EKF)算法结合, 设计了非机动模型EKF1及机动模型EKF2作为IMM算法模型集。其次, 预报模型采用适应椭圆参考轨道的非线性相对轨道动力学方程以提高模型预报精度。最后, 分析了速率量测信息对减小机动目标跟踪峰值误差的作用。仿真结果表明, 改进的模型转移概率自适应IMM-EKF算法跟踪精度明显提高, 且优于比较的现有方法; 引入速率量测信息后, 最大峰值误差及估计精度得到了改善。 相似文献
12.
针对传统卡尔曼滤波器用于高动态载波跟踪时性能不够理想的问题,提出一种基于机动目标模型匹配的卡尔曼滤波载波跟踪算法,能够在载波参数剧烈变化的条件下实现稳定的载波同步。所提算法较传统算法更加契合实际环境,具有实用价值高、应用范围广等优点。使用线性卡尔曼滤波器,无需矩阵求逆运算,计算复杂度低,便于工程实现。仿真结果表明,所提算法在跟踪具有剧烈动态特性的载体信号时能够显著提高跟踪精度,且跟踪门限信噪比能够降低约3 dB。 相似文献
13.
针对标准标签多伯努利(labeled-multi-Bernoulli, LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model-LMB, MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到了新的预测和更新方程,并给出了算法的序贯蒙特卡罗实现。仿真实验表明,MM-LMB算法能对多机动目标进行有效跟踪,在复杂探测环境下跟踪精度优于多模型概率假设密度(multiple model probability hypothesis density, MM-PHD)算法和多模型势平衡多目标多伯努利(multiple model cardinality balanced multi-target multi-Bernoulli, MM-CBMeMBer)算法;所提算法计算量当目标相距较远时低于MM-PHD和MM-CBMeMBer,目标聚集时增长速度快于对比算法。 相似文献
14.
粒子滤波是指利用Monte Carlo仿真方法处理递推估计问题的非线性滤波算法,这种方法不受模型线性和Gauss假设的约束,是一种处理非线性非高斯动态系统状态估计的有效算法。在粒子滤波的基础上融合扩展卡尔曼滤波(EKF)算法,融合后的新算法在计算提议概率密度分布时,粒子的产生充分考虑当前时刻的量测,使得粒子的分布更加接近状态的后验概率分布。仿真结果表明,该算法对机动目标有更好的跟踪效果。 相似文献
15.
针对基于当前统计(current statistics,CS)模型的机动目标状态估计算法对机动目标加速度的极限值依赖性大的缺陷,提出了一种利用自适应神经网络-模糊推理系统(adaptive neuro-fuzzy inference system, ANFIS)自适应调整目标状态噪声方差的方法。首先利用ANFIS算法对目标机动强度进行估计,进而对目标状态噪声协方差矩阵进行自适应调整;然后利用粒子滤波(particle filter, PF)算法对目标状态进行估计。仿真结果表明,与该方法能够有效提高目标状态估计的精度。 相似文献
16.
针对传统输入估计算法跟踪机动目标时检测概率和估计精度不高的缺点,提出一种改进的输入估计跟踪算法。算法利用对检测窗内新息序列进行修正以及对卡尔曼滤波状态变量进行补偿的方法,消除了已有机动检测估计对后继机动输入估计的影响,提高了对机动的检测概率和估计精度。理论分析和仿真结果表明,改进后的算法相比原有算法和IMM3算法,不仅跟踪性能有显著提高,而且对加速度缓变的机动也有较好的跟踪能力。 相似文献
17.
机动目标跟踪过程中的转换概率矩阵往往是未知的,系统状态也将呈现非线性、非高斯、不完全观测的特点。传统的方法如交互多模型、广义伪贝叶斯算法等解决该类型问题的效果并不理想。将准贝叶斯法则和辅助粒子滤波算法相结合,提出了一种新的未知转换概率矩阵条件下的机动目标跟踪算法(QB-APF)。仿真结果表明,该算法与其他方法相比具有更高的滤波精度和较好的数值稳定性。 相似文献