首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Daneman R  Zhou L  Kebede AA  Barres BA 《Nature》2010,468(7323):562-566
Vascular endothelial cells in the central nervous system (CNS) form a barrier that restricts the movement of molecules and ions between the blood and the brain. This blood-brain barrier (BBB) is crucial to ensure proper neuronal function and protect the CNS from injury and disease. Transplantation studies have demonstrated that the BBB is not intrinsic to the endothelial cells, but is induced by interactions with the neural cells. Owing to the close spatial relationship between astrocytes and endothelial cells, it has been hypothesized that astrocytes induce this critical barrier postnatally, but the timing of BBB formation has been controversial. Here we demonstrate that the barrier is formed during embryogenesis as endothelial cells invade the CNS and pericytes are recruited to the nascent vessels, over a week before astrocyte generation. Analysing mice with null and hypomorphic alleles of Pdgfrb, which have defects in pericyte generation, we demonstrate that pericytes are necessary for the formation of the BBB, and that absolute pericyte coverage determines relative vascular permeability. We demonstrate that pericytes regulate functional aspects of the BBB, including the formation of tight junctions and vesicle trafficking in CNS endothelial cells. Pericytes do not induce BBB-specific gene expression in CNS endothelial cells, but inhibit the expression of molecules that increase vascular permeability and CNS immune cell infiltration. These data indicate that pericyte-endothelial cell interactions are critical to regulate the BBB during development, and disruption of these interactions may lead to BBB dysfunction and neuroinflammation during CNS injury and disease.  相似文献   

2.
Pericytes regulate the blood-brain barrier   总被引:2,自引:0,他引:2  
The blood-brain barrier (BBB) consists of specific physical barriers, enzymes and transporters, which together maintain the necessary extracellular environment of the central nervous system (CNS). The main physical barrier is found in the CNS endothelial cell, and depends on continuous complexes of tight junctions combined with reduced vesicular transport. Other possible constituents of the BBB include extracellular matrix, astrocytes and pericytes, but the relative contribution of these different components to the BBB remains largely unknown. Here we demonstrate a direct role of pericytes at the BBB in vivo. Using a set of adult viable pericyte-deficient mouse mutants we show that pericyte deficiency increases the permeability of the BBB to water and a range of low-molecular-mass and high-molecular-mass tracers. The increased permeability occurs by endothelial transcytosis, a process that is rapidly arrested by the drug imatinib. Furthermore, we show that pericytes function at the BBB in at least two ways: by regulating BBB-specific gene expression patterns in endothelial cells, and by inducing polarization of astrocyte end-feet surrounding CNS blood vessels. Our results indicate a novel and critical role for pericytes in the integration of endothelial and astrocyte functions at the neurovascular unit, and in the regulation of the BBB.  相似文献   

3.
Members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family contribute to immune responses through activation of nuclear factor-κB (NF-κB), type I interferon and inflammasome signalling. Mice lacking the NLR family member NLRP6 were recently shown to be susceptible to colitis and colorectal tumorigenesis, but the role of NLRP6 in microbial infections and the nature of the inflammatory signalling pathways regulated by NLRP6 remain unclear. Here we show that Nlrp6-deficient mice are highly resistant to infection with the bacterial pathogens Listeria monocytogenes, Salmonella typhimurium and Escherichia coli. Infected Nlrp6-deficient mice had increased numbers of monocytes and neutrophils in circulation, and NLRP6 signalling in both haematopoietic and radioresistant cells contributed to increased susceptibility. Nlrp6 deficiency enhanced activation of mitogen-activated protein kinase (MAPK) and the canonical NF-κB pathway after Toll-like receptor ligation, but not cytosolic NOD1/2 ligation, in vitro. Consequently, infected Nlrp6-deficient cells produced increased levels of NF-κB- and MAPK-dependent cytokines and chemokines. Thus, our results reveal NLRP6 as a negative regulator of inflammatory signalling, and demonstrate a role for this NLR in impeding clearance of both Gram-positive and -negative bacterial pathogens.  相似文献   

4.
The bony skeleton is maintained by local factors that regulate bone-forming osteoblasts and bone-resorbing osteoclasts, in addition to hormonal activity. Osteoprotegerin protects bone by inhibiting osteoclastic bone resorption, but no factor has yet been identified as a local determinant of bone mass that regulates both osteoclasts and osteoblasts. Here we show that semaphorin 3A (Sema3A) exerts an osteoprotective effect by both suppressing osteoclastic bone resorption and increasing osteoblastic bone formation. The binding of Sema3A to neuropilin-1 (Nrp1) inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation by inhibiting the immunoreceptor tyrosine-based activation motif (ITAM) and RhoA signalling pathways. In addition, Sema3A and Nrp1 binding stimulated osteoblast and inhibited adipocyte differentiation through the canonical Wnt/β-catenin signalling pathway. The osteopenic phenotype in Sema3a?/? mice was recapitulated by mice in which the Sema3A-binding site of Nrp1 had been genetically disrupted. Intravenous Sema3A administration in mice increased bone volume and expedited bone regeneration. Thus, Sema3A is a promising new therapeutic agent in bone and joint diseases.  相似文献   

5.
目的 为探究肝纤维化的发生发展机制及病理病因的特点,本研究通过建立二乙基亚硝胺(diethylnitrosamine,DEN)诱导的肝纤维化动态小鼠模型,动态监测上述小鼠模型的血清生化指标,推断肝纤维化阶段.方法 雄性C57BL/6小鼠按梯度剂量每周2次腹腔注射DEN,连续8周.分别在第2、4、6和8周收集小鼠的血清和...  相似文献   

6.
7.
血脑屏障(blood-brain barrier, BBB)阻碍了具有治疗潜力的大分子化合物从外周组织进入脑内。为了寻找一种高效、快速通过BBB的靶向性载体,本实验通过罗丹明B标记的狂犬病毒糖蛋白衍生肽(RDP)注射入昆明小鼠体内,与15min、5h取大脑、脊髓及肝、肾等外周组织,冷冻切片观察其在体内的分布,并通过构建pET28a-RDP-luciferase重组质粒,结果发现融合蛋白能快速的穿过血脑屏障分布于中枢神经系统,为治疗中枢神经系统的药物开发提供新的思路。  相似文献   

8.
9.
目的:波棱瓜子是常见的用于治疗肝病的藏药,疗效确切.前期研究表明,总木脂素是波棱瓜子抗肝损伤的有效部位,但疗效尚不明确.本研究拟考察藏药波棱瓜子总木脂素对ConA致小鼠免疫性肝损伤的保护作用,并进一步探讨其对抗肝损伤的作用机制.方法:采用尾静脉注射一次性ConA(20mg/kg)诱发小鼠免疫性肝损伤,造模8h后取血样和肝脏,考察不同剂量的波棱瓜子总木脂素对各组小鼠脏器系数、血清丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)、碱性磷酸酶(ALP)、骨过氧化物酶(MPO)、一氧化氮(NO)、一氧化氮合酶(NOS)及肝组织匀浆中超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)等生化指标活力或水平的影响;以HE染色对肝组织进行组织病理学检查;免疫组织化学法检测波棱瓜子总木脂素对各组小鼠肝脏中肿瘤坏死因子-α(TNF-α)、干扰素-γ(IFN-γ)、白细胞介素-4(IL-4)、白细胞介素-10(IL-10)、核转录因子-κB(NF-κB)表达的影响.结果:波棱瓜子总木脂素可以降低ConA所致免疫性肝损伤小鼠肝脏系数及血清ALT、AST、ALP活力,显示出较好的保肝作用.同时波棱瓜子总木脂素也可降低肝损伤小鼠血清NO水平和MPO、NOS活力,并减少肝组织匀浆中MDA的含量,增强SOD和GSH-Px活性,表现出良好的抗氧化作用;免疫组化结果显示,波棱瓜子总木脂素还能抑制诸如TNF-α、IFN-γ、IL-4、NF-κB等促炎症因子的表达,促进抗炎症因子IL-10的表达,从而抑制肝脏炎症反应而发挥其保肝作用.病理观察结果也表明,波棱瓜子总木脂素能减轻ConA对肝组织的损伤.结论:波棱瓜子总木脂素对ConA致小鼠免疫性肝损伤都具有一定的保护作用,其保肝作用可能与其抗炎、抗氧化能力有关.  相似文献   

10.
Zhang L  Ding X  Cui J  Xu H  Chen J  Gong YN  Hu L  Zhou Y  Ge J  Lu Q  Liu L  Chen S  Shao F 《Nature》2012,481(7380):204-208
NF-κB is crucial for innate immune defence against microbial infection. Inhibition of NF-κB signalling has been observed with various bacterial infections. The NF-κB pathway critically requires multiple ubiquitin-chain signals of different natures. The question of whether ubiquitin-chain signalling and its specificity in NF-κB activation are regulated during infection, and how this regulation takes place, has not been explored. Here we show that human TAB2 and TAB3, ubiquitin-chain sensory proteins involved in NF-κB signalling, are directly inactivated by enteropathogenic Escherichia coli NleE, a conserved bacterial type-III-secreted effector responsible for blocking host NF-κB signalling. NleE harboured an unprecedented S-adenosyl-l-methionine-dependent methyltransferase activity that specifically modified a zinc-coordinating cysteine in the Npl4 zinc finger (NZF) domains in TAB2 and TAB3. Cysteine-methylated TAB2-NZF and TAB3-NZF (truncated proteins only comprising the NZF domain) lost the zinc ion as well as the ubiquitin-chain binding activity. Ectopically expressed or type-III-secretion-system-delivered NleE methylated TAB2 and TAB3 in host cells and diminished their ubiquitin-chain binding activity. Replacement of the NZF domain of TAB3 with the NleE methylation-insensitive Npl4 NZF domain resulted in NleE-resistant NF-κB activation. Given the prevalence of zinc-finger motifs and activation of cysteine thiol by zinc binding, methylation of zinc-finger cysteine might regulate other eukaryotic pathways in addition to NF-κB signalling.  相似文献   

11.
SHARPIN is a ubiquitin-binding and ubiquitin-like-domain-containing protein which, when mutated in mice, results in immune system disorders and multi-organ inflammation. Here we report that SHARPIN functions as a novel component of the linear ubiquitin chain assembly complex (LUBAC) and that the absence of SHARPIN causes dysregulation of NF-κB and apoptotic signalling pathways, explaining the severe phenotypes displayed by chronic proliferative dermatitis (cpdm) in SHARPIN-deficient mice. Upon binding to the LUBAC subunit HOIP (also known as RNF31), SHARPIN stimulates the formation of linear ubiquitin chains in vitro and in vivo. Coexpression of SHARPIN and HOIP promotes linear ubiquitination of NEMO (also known as IKBKG), an adaptor of the IκB kinases (IKKs) and subsequent activation of NF-κB signalling, whereas SHARPIN deficiency in mice causes an impaired activation of the IKK complex and NF-κB in B cells, macrophages and mouse embryonic fibroblasts (MEFs). This effect is further enhanced upon concurrent downregulation of HOIL-1L (also known as RBCK1), another HOIP-binding component of LUBAC. In addition, SHARPIN deficiency leads to rapid cell death upon tumour-necrosis factor α (TNF-α) stimulation via FADD- and caspase-8-dependent pathways. SHARPIN thus activates NF-κB and inhibits apoptosis via distinct pathways in vivo.  相似文献   

12.
Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.  相似文献   

13.
Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis.   总被引:74,自引:0,他引:74  
X M Yin  K Wang  A Gross  Y Zhao  S Zinkel  B Klocke  K A Roth  S J Korsmeyer 《Nature》1999,400(6747):886-891
The protein Bid is a participant in the pathway that leads to cell death (apoptosis), mediating the release of cytochrome c from mitochondria in response to signals from 'death' receptors known as TNFR1/Fas on the cell surface. It is a member of the proapoptotic Bcd-2 family and is activated as a result of its cleavage by caspase 8, one of a family of proteolytic cell-death proteins. To investigate the role of Bid in vivo, we have generated mice deficient for Bid. We find that when these mice are injected with an antibody directed against Fas, they nearly all survive, whereas wild-type mice die from hepatocellular apoptosis and haemorrhagic necrosis. About half of the Bid-deficient animals had no apparent liver injury and showed no evidence of activation of the effector caspases 3 and 7, although the initiator caspase 8 had been activated. Other Bid-deficient mice survived with only moderate damage: all three caspases (8 and 37) were activated but their cell nuclei were intact and no mitochondrial cytochrome c was released. We also investigated the effects of Bid deficiency in cultured cells treated with anti-Fas antibody (hepatocytes and thymocytes) or with TNFalpha. (fibroblasts). In these Bid-/- cells, mitochondrial dysfunction was delayed, cytochrome c was not released, effector caspase activity was reduced and the cleavage of apoptosis substrates was altered. This loss-of-function model indicates that Bid is a critical substrate in vivo for signalling by death-receptor agonists, which mediates a mitochondrial amplification loop that is essential for the apoptosis of selected cells.  相似文献   

14.
The Sir2 deacetylase regulates chromatin silencing and lifespan in Saccharomyces cerevisiae. In mice, deficiency for the Sir2 family member SIRT6 leads to a shortened lifespan and a premature ageing-like phenotype. However, the molecular mechanisms of SIRT6 function are unclear. SIRT6 is a chromatin-associated protein, but no enzymatic activity of SIRT6 at chromatin has yet been detected, and the identity of physiological SIRT6 substrates is unknown. Here we show that the human SIRT6 protein is an NAD+-dependent, histone H3 lysine 9 (H3K9) deacetylase that modulates telomeric chromatin. SIRT6 associates specifically with telomeres, and SIRT6 depletion leads to telomere dysfunction with end-to-end chromosomal fusions and premature cellular senescence. Moreover, SIRT6-depleted cells exhibit abnormal telomere structures that resemble defects observed in Werner syndrome, a premature ageing disorder. At telomeric chromatin, SIRT6 deacetylates H3K9 and is required for the stable association of WRN, the factor that is mutated in Werner syndrome. We propose that SIRT6 contributes to the propagation of a specialized chromatin state at mammalian telomeres, which in turn is required for proper telomere metabolism and function. Our findings constitute the first identification of a physiological enzymatic activity of SIRT6, and link chromatin regulation by SIRT6 to telomere maintenance and a human premature ageing syndrome.  相似文献   

15.
A minority of individuals experiencing traumatic events develop anxiety disorders. The reason for the lack of correspondence between the prevalence of exposure to psychological trauma and the development of anxiety is unknown. Extracellular proteolysis contributes to fear-associated responses by facilitating neuronal plasticity at the neuron-matrix interface. Here we show in mice that the serine protease neuropsin is critical for stress-related plasticity in the amygdala by regulating the dynamics of the EphB2-NMDA-receptor interaction, the expression of Fkbp5 and anxiety-like behaviour. Stress results in neuropsin-dependent cleavage of EphB2 in the amygdala causing dissociation of EphB2 from the NR1 subunit of the NMDA receptor and promoting membrane turnover of EphB2 receptors. Dynamic EphB2-NR1 interaction enhances NMDA receptor current, induces Fkbp5 gene expression and enhances behavioural signatures of anxiety. On stress, neuropsin-deficient mice do not show EphB2 cleavage and its dissociation from NR1 resulting in a static EphB2-NR1 interaction, attenuated induction of the Fkbp5 gene and low anxiety. The behavioural response to stress can be restored by intra-amygdala injection of neuropsin into neuropsin-deficient mice and disrupted by the injection of either anti-EphB2 antibodies or silencing the Fkbp5 gene in the amygdala of wild-type mice. Our findings establish a novel neuronal pathway linking stress-induced proteolysis of EphB2 in the amygdala to anxiety.  相似文献   

16.
XRCC4 is a non-homologous end-joining protein employed in DNA double strand break repair and in V(D)J recombination. In mice, XRCC4-deficiency causes a pleiotropic phenotype, which includes embryonic lethality and massive neuronal apoptosis. When DNA damage is not repaired, activation of the cell cycle checkpoint protein p53 can lead to apoptosis. Here we show that p53-deficiency rescues several aspects of the XRCC4-deficient phenotype, including embryonic lethality, neuronal apoptosis, and impaired cellular proliferation. However, there was no significant rescue of impaired V(D)J recombination or lymphocyte development. Although p53-deficiency allowed postnatal survival of XRCC4-deficient mice, they routinely succumbed to pro-B-cell lymphomas which had chromosomal translocations linking amplified c-myc oncogene and IgH locus sequences. Moreover, even XRCC4-deficient embryonic fibroblasts exhibited marked genomic instability including chromosomal translocations. Our findings support a crucial role for the non-homologous end-joining pathway as a caretaker of the mammalian genome, a role required both for normal development and for suppression of tumours.  相似文献   

17.
采用综合方法对4省36所中小学的公共安全教育与伤害防范工作进行研究.结果发现:校园公共安全教育多以说教形式为主,伤害防范普遍缺乏实际操作和演练,导致中小学生公共安全知识相对贫乏,伤害防范和急救能力存有较大差异.应针对中小学生的身心特点和需求,设计和完善公共安全教育和伤害防范工作的制度和措施,将有害学生身心健康的因素和影响减少到最小程度,为21世纪中国现代化建设提供安全少灾的人力资源环境,为创建安全和谐社会做出贡献.  相似文献   

18.
考察金线莲多糖抗衰老作用及其机制.每天给小鼠皮下注射D-半乳糖溶液(40 mg·kg-1)诱导其衰老,同时灌胃给予金线莲多糖(100,200,300 mg·kg-1)或维生素E(200 mg·kg-1)进行治疗,以维生素E治疗组为阳性对照.6周后对小鼠进行行为学测试,8周后检测小鼠的大脑皮层p-NF-κB p65表达,以及大脑皮层过氧化氢酶、超氧化物歧化酶及血清总抗氧化能力活性和丙二醛浓度,并检测小鼠腹腔巨噬细胞的吞噬情况.结果表明:与衰老小鼠相比较,经金线莲多糖治疗后,小鼠的抗氧化酶活性显著提高,其大脑皮层p-NF-κB p65表达下调,且运动、空间探索和学习记忆能力明显改善;同时,金线莲多糖能增强衰老小鼠清除抗原的能力;金线莲多糖抗衰老作用与其抗氧化、抑制NF-κB信号通路、增强衰老小鼠免疫能力有关.  相似文献   

19.
Signal transduction through Toll-like receptors (TLRs) originates from their intracellular Toll/interleukin-1 receptor (TIR) domain, which binds to MyD88, a common adaptor protein containing a TIR domain. Although cytokine production is completely abolished in MyD88-deficient mice, some responses to lipopolysaccharide (LPS), including the induction of interferon-inducible genes and the maturation of dendritic cells, are still observed. Another adaptor, TIRAP (also known as Mal), has been cloned as a molecule that specifically associates with TLR4 and thus may be responsible for the MyD88-independent response. Here we report that LPS-induced splenocyte proliferation and cytokine production are abolished in mice lacking TIRAP. As in MyD88-deficient mice, LPS activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases is induced with delayed kinetics in TIRAP-deficient mice. Expression of interferon-inducible genes and the maturation of dendritic cells is observed in these mice; they also show defective response to TLR2 ligands, but not to stimuli that activate TLR3, TLR7 or TLR9. In contrast to previous suggestions, our results show that TIRAP is not specific to TLR4 signalling and does not participate in the MyD88-independent pathway. Instead, TIRAP has a crucial role in the MyD88-dependent signalling pathway shared by TLR2 and TLR4.  相似文献   

20.
R E Heikkila  L Manzino  F S Cabbat  R C Duvoisin 《Nature》1984,311(5985):467-469
1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) causes degeneration of the dopaminergic nigrostriatal pathway in several animal species, including humans, monkeys and mice. Changes observed after MPTP administration include marked decrements in the neostriatal content of dopamine and its major metabolites, dihydroxyphenylacetic acid and homovanillic acid, and a greatly diminished capacity of neostriatal synaptosomes to take up 3H-dopamine. In contrast, there is no pronounced loss of serotonin in the neostriatum or of dopamine and its metabolites in other brain areas in MPTP-treated animals. The oxidative metabolism of MPTP to 1-methyl-4-phenyl pyridine, a positively charged species, has been suggested as a critical feature in the neurotoxic process. Moreover, in rat brain preparations, the monoamine oxidase (MAO) inhibitor pargyline and the specific MAO-B inhibitor deprenil can prevent the formation of 1-methyl-4-phenyl-pyridine from MPTP, while the specific MAO-A inhibitor clorgyline has no such effect, suggesting that MAO, and specifically MAO-B, is responsible for the oxidative metabolism of MPTP. We now report that pargyline, nialamide and tranylcypromine, which inhibit both MAO-A and MAO-B, when administered to mice before MPTP, protect against MPTP-induced dopaminergic neurotoxicity. Deprenil is also protective, but clorgyline is not. Our data are consistent with the premise that MAO-B has a crucial role in MPTP-induced degeneration of the nigrostriatal dopaminergic neuronal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号