首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Noble  K Murray  P Stroobant  M D Waterfield  P Riddle 《Nature》1988,333(6173):560-562
The mitogens which modulate cell-cell interactions during development of the central nervous system are unknown. One of the few interactions sufficiently well understood to allow identification of such molecules involves the two glial lineages which make up the rat optic nerve. One population of glial cells in this tissue, the type-1 astrocytes, secrete a soluble factor(s) which promotes division of a second population of bipotential oligodendrocyte/type-2 astrocyte (O-2A) progenitor cells; these progenitors give rise to oligodendrocytes, which myelinate large axons in the CNS, and type-2 astrocytes, which enwrap bare axons at nodes of Ranvier. Type-1 astrocytes also promote progenitor motility, and inhibit the premature differentiation of progenitors into oligodendrocytes which occur when these cells are grown in the absence of type-1 astrocytes. We have now found that platelet-derived growth factor mimics the effects of type-1 astrocytes on O-2A progenitor cells, and antibodies to PDGF block the effects of type-1 astrocytes.  相似文献   

2.
Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein   总被引:105,自引:0,他引:105  
Adult mammalian axon regeneration is generally successful in the peripheral nervous system (PNS) but is dismally poor in the central nervous system (CNS). However, many classes of CNS axons can extend for long distances in peripheral nerve grafts. A comparison of myelin from the CNS and the PNS has revealed that CNS white matter is selectively inhibitory for axonal outgrowth. Several components of CNS white matter, NI35, NI250(Nogo) and MAG, that have inhibitory activity for axon extension have been described. The IN-1 antibody, which recognizes NI35 and NI250(Nogo), allows moderate degrees of axonal regeneration and functional recovery after spinal cord injury. Here we identify Nogo as a member of the Reticulon family, Reticulon 4-A. Nogo is expressed by oligodendrocytes but not by Schwann cells, and associates primarily with the endoplasmic reticulum. A 66-residue lumenal/extracellular domain inhibits axonal extension and collapses dorsal root ganglion growth cones. In contrast to Nogo, Reticulon 1 and 3 are not expressed by oligodendrocytes, and the 66-residue lumenal/extracellular domains from Reticulon 1, 2 and 3 do not inhibit axonal regeneration. These data provide a molecular basis to assess the contribution of Nogo to the failure of axonal regeneration in the adult CNS.  相似文献   

3.
Myelin-associated glycoprotein in human retina   总被引:1,自引:0,他引:1  
The human retina is unmyelinated, but structural similarities have been noted between Müller cells, the main glial cell type of retina, and oligodendrocytes, the myelin-forming cells of the central nervous system. We now show that antibodies against myelin-associated glycoprotein, a minor component of central and peripheral myelin so far found only in myelin and myelin-forming cells, also stain Müller cells. Immunoblot analysis of retinal proteins indicates that the antigen detected is myelin associated glycoprotein. These results suggest a closer relationship between Müller cells and oligodendrocytes than previously suspected and raise questions about the functional role of myelin-associated glycoprotein.  相似文献   

4.
R K Small  P Riddle  M Noble 《Nature》1987,328(6126):155-157
Formation of myelinated tracts in central nervous system (CNS) regions such as the optic nerve seems to depend on two glial cell types, both of which derive from a common progenitor cell. This oligodendrocyte--type-2 astrocyte (O-2A) progenitor cell gives rise to oligodendrocytes, which produce internodal myelin sheaths, and to type-2 astrocytes, which extend fine processes in the region of the nodal axolemma. The optic nerve also contains a third glial cell, the type-1 astrocyte, which derives from a separate precursor. These three glial cells develop in a fixed sequence over a two-week period: type-1 astrocytes appear at embryonic day 16 (E16), oligodendrocytes at the day of birth (E21 or postnatal day P0), and type-2 astrocytes between P8 and P10. Type-1 astrocytes secrete a potent mitogen which causes expansion of the O-2A progenitor cell population in vitro. Here, we report that dividing O-2A progenitor cells are highly motile and seem to migrate from the brain into the optic nerve, beginning at its chiasmal end. Our results indicate that long-distance migration along the neural axis is characteristic only of progenitors of the O-2A lineage and may serve to distribute these cells to regions of the CNS that will become myelinated. These results also suggest that the intrinsic neuroepithelial cells of the optic stalk may be even more restricted than previously thought, giving rise only to type-1 astrocytes.  相似文献   

5.
Major histocompatibility complex (MHC) molecules are not normally expressed in the central nervous system (CNS). However, aberrant expression has been observed in multiple sclerosis lesions and could contribute to the destruction of myelin or the myelinating cells known as oligodendrocytes. The mechanism of cell damage associated with aberrant MHC molecule expression is unclear: for example, overexpression of class I and class II MHC molecules in pancreatic beta cells in transgenic mice leads to nonimmune destruction of the cells and insulin-dependent diabetes mellitus. We have generated transgenic mice that express class I H-2Kb MHC molecules, under the control of the myelin basic protein promoter, specifically in oligodendrocytes. Homozygous transgenic mice have a shivering phenotype, develop tonic seizures and die at 15-22 days. This phenotype, which we term 'wonky', is due to hypomyelination in the CNS, and not to involvement of the immune system. The primary defect appears to be a shortage of myelinating oligodendrocytes resulting from overexpression of the class I MHC molecules.  相似文献   

6.
Nave KA 《Nature》2010,468(7321):244-252
The myelination of axons by glial cells was the last major step in the evolution of cells in the vertebrate nervous system, and white-matter tracts are key to the architecture of the mammalian brain. Cell biology and mouse genetics have provided insight into axon-glia signalling and the molecular architecture of the myelin sheath. Glial cells that myelinate axons were found to have a dual role by also supporting the long-term integrity of those axons. This function may be independent of myelin itself. Myelin abnormalities cause a number of neurological diseases, and may also contribute to complex neuropsychiatric disorders.  相似文献   

7.
C Ffrench-Constant  M C Raff 《Nature》1986,323(6086):335-338
Astrocytes are one of the most numerous cell types in the vertebrate central nervous system (CNS) and yet their functions are largely unknown. In the rat optic nerve there are two distinct types of astrocyte: type-1 astrocytes develop from one type of precursor cell, and type-2 astrocytes develop from bipotential, oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, that initially give rise to oligodendrocytes (which make myelin in the CNS), and then to type-2 astrocytes. Type-1 astrocytes form the glial limiting membrane at the periphery of the optic nerve and are probably responsible for glial scar formation following nerve transection. The functions of type-2 astrocytes, which, like oligodendrocytes, are found mainly in tracts of myelinated axons throughout the CNS, are unknown. In this report we provide evidence that processes from type-2 astrocytes contribute to the structure of nodes of Ranvier, suggesting that the O-2A cell lineage is specialized for constructing myelin sheaths and nodes in the mammalian CNS.  相似文献   

8.
Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration   总被引:156,自引:0,他引:156  
Fournier AE  GrandPre T  Strittmatter SM 《Nature》2001,409(6818):341-346
Nogo has been identified as a component of the central nervous system (CNS) myelin that prevents axonal regeneration in the adult vertebrate CNS. Analysis of Nogo-A has shown that an axon-inhibiting domain of 66 amino acids is expressed at the extracellular surface and at the endoplasmic reticulum lumen of transfected cells and oligodendrocytes. The acidic amino terminus of Nogo-A is detected at the cytosolic face of cellular membranes and may contribute to inhibition of axon regeneration at sites of oligodendrocyte injury. Here we show that the extracellular domain of Nogo (Nogo-66) inhibits axonal extension, but does not alter non-neuronal cell morphology. In contrast, a multivalent form of the N terminus of Nogo-A affects the morphology of both neurons and other cell types. Here we identify a brain-specific, leucine-rich-repeat protein with high affinity for soluble Nogo-66. Cleavage of the Nogo-66 receptor and other glycophosphatidylinositol-linked proteins from axonal surfaces renders neurons insensitive to Nogo-66. Nogo-66 receptor expression is sufficient to impart Nogo-66 axonal inhibition to unresponsive neurons. Disruption of the interaction between Nogo-66 and its receptor provides the potential for enhanced recovery after human CNS injury.  相似文献   

9.
S Temple  M C Raff 《Nature》1985,313(5999):223-225
Although it is known that most cells of the vertebrate central nervous system (CNS) are derived from the neuroepithelial cells of the neural tube, the factors determining whether an individual neuroepithelial cell develops into a particular type of neurone or glial cell remain unknown. A promising model for studying this problem is the bipotential glial progenitor cell in the developing rat optic nerve; this cell differentiates into a particular type of astrocyte (a type-2 astrocyte) if cultured in 10% fetal calf serum (FCS) and into an oligodendrocyte if cultured in serum-free medium. As the oligodendrocyte-type-2 astrocyte (0-2A) progenitor cell can differentiate along either glial pathway in neurone-free cultures, living axons clearly are not required for its differentiation, at least in vitro. However, the studies on 0-2A progenitor cells were carried out in bulk cultures of optic nerve, and so it was possible that other cell-cell interactions were required for differentiation in culture. We show here that 0-2A progenitor cells can differentiate into type-2 astrocytes or oligodendrocytes when grown as isolated cells in microculture, indicating that differentiation along either glial pathway in vitro does not require signals from other CNS cells, apart from the signals provided by components of the culture medium. We also show that single 0-2A progenitor cells can differentiate along either pathway without dividing, supporting our previous studies using 3H-thymidine and suggesting that DNA replication is not required for these cells to choose between the two differentiation programmes.  相似文献   

10.
Widespread demyelination and axonal loss are the pathological hallmarks of multiple sclerosis. The multifocal nature of this chronic inflammatory disease of the central nervous system complicates cellular therapy and puts emphasis on both the donor cell origin and the route of cell transplantation. We established syngenic adult neural stem cell cultures and injected them into an animal model of multiple sclerosis--experimental autoimmune encephalomyelitis (EAE) in the mouse--either intravenously or intracerebroventricularly. In both cases, significant numbers of donor cells entered into demyelinating areas of the central nervous system and differentiated into mature brain cells. Within these areas, oligodendrocyte progenitors markedly increased, with many of them being of donor origin and actively remyelinating axons. Furthermore, a significant reduction of astrogliosis and a marked decrease in the extent of demyelination and axonal loss were observed in transplanted animals. The functional impairment caused by EAE was almost abolished in transplanted mice, both clinically and neurophysiologically. Thus, adult neural precursor cells promote multifocal remyelination and functional recovery after intravenous or intrathecal injection in a chronic model of multiple sclerosis.  相似文献   

11.
H Marrero  M L Astion  J A Coles  R K Orkand 《Nature》1989,339(6223):378-380
The functions of glial cells in the nervous system are not well defined, with the exception of myelin production by oligodendrocytes, uptake of amino-acid synaptic transmitters, and a contribution to extracellular potassium homeostasis. Neuroglia have receptors for neurotransmitters which may be involved in neuron-glia interactions. Recent studies have demonstrated voltage-gated ion channels in glial membranes. In a study of the optic nerve of the frog, small areas of the surface were examined with the loose patch-clamp method, and voltage-gated Na+ and K+ channels, presumably located in the membranes of the astrocytes forming the glia limitans, were identified. We now report that nerve impulses in the axons of the frog optic nerve transiently alter the properties of the voltage-dependent membrane channels of the surface glial cells (astrocytes), a demonstration of a new form of neuron-glia interaction.  相似文献   

12.
The capacity of the adult brain and spinal cord to repair lesions by axonal regeneration or compensatory fibre growth is extremely limited. A monoclonal antibody (IN-1) raised against NI-220/250, a myelin protein that is a potent inhibitor of neurite growth, promoted axonal regeneration and compensatory plasticity following lesions of the central nervous system (CNS) in adult rats. Here we report the cloning of nogo A, the rat complementary DNA encoding NI-220/250. The nogo gene encodes at least three major protein products (Nogo-A, -B and -C). Recombinant Nogo-A is recognized by monoclonal antibody IN-1, and it inhibits neurite outgrowth from dorsal root ganglia and spreading of 3T3 fibroblasts in an IN-1-sensitive manner. Antibodies against Nogo-A stain CNS myelin and oligodendrocytes and allow dorsal root ganglion neurites to grow on CNS myelin and into optic nerve explants. These data show that Nogo-A is a potent inhibitor of neurite growth and an IN-1 antigen produced by oligodendrocytes, and may allow the generation of new reagents to enhance CNS regeneration and plasticity.  相似文献   

13.
Nogo-66 receptor antagonist peptide promotes axonal regeneration   总被引:120,自引:0,他引:120  
GrandPré T  Li S  Strittmatter SM 《Nature》2002,417(6888):547-551
Myelin-derived axon outgrowth inhibitors, such as Nogo, may account for the lack of axonal regeneration in the central nervous system (CNS) after trauma in adult mammals. A 66-residue domain of Nogo (Nogo-66) is expressed on the surface of oligodendrocytes and can inhibit axonal outgrowth through an axonal Nogo-66 receptor (NgR). The IN-1 monoclonal antibody recognizes Nogo-A and promotes corticospinal tract regeneration and locomotor recovery; however, the undefined nature of the IN-1 epitope in Nogo, the limited specificity of IN-1 for Nogo, and nonspecific anti-myelin effects have prevented a firm conclusion about the role of Nogo-66 or NgR. Here, we identify competitive antagonists of NgR derived from amino-terminal peptide fragments of Nogo-66. The Nogo-66(1 40) antagonist peptide (NEP1 40) blocks Nogo-66 or CNS myelin inhibition of axonal outgrowth in vitro, demonstrating that NgR mediates a significant portion of axonal outgrowth inhibition by myelin. Intrathecal administration of NEP1 40 to rats with mid-thoracic spinal cord hemisection results in significant axon growth of the corticospinal tract, and improves functional recovery. Thus, Nogo-66 and NgR have central roles in limiting axonal regeneration after CNS injury, and NEP1-40 provides a potential therapeutic agent.  相似文献   

14.
In multiple sclerosis, a demyelinating disease of young adults, there is a paucity of myelin repair in the central nervous system (CNS) which is necessary for the restoration of fast saltatory conduction in axons. Consequently, this relapsing disease often causes marked disability. In similar diseases of small rodents, however, remyelination can be quite extensive, as in the demyelinating disease caused by the A59 strain of mouse hepatitis virus (MHV-A59), a coronavirus of mice. To investigate when and where oligodendrocytes are first triggered to repair CNS myelin in such disease, we have used a complementary DNA probe specific for one major myelin protein gene, myelin basic protein (MBP), which hybridizes with the four forms of MBP messenger RNA in rodents. Using Northern blot and in situ hybridization techniques, we previously found that MBP mRNA is first detected at about 5 days after birth, peaks at 18 days and progressively decreases to 25% of the peak levels in the adult. We now report that in spinal cord sections of adult animals with active demyelination and inflammatory cells, in situ hybridization reveals a dramatic increase in probe binding to MBP-specific mRNA at 2-3 weeks after virus inoculation and before remyelination can be detected by morphological methods. This increase of MBP-specific mRNA is found at the edge of the demyelinating area and extends into surrounding areas of normal-appearing white matter. Thus, in situ hybridization with myelin-specific probes appears to be a useful method for detecting the timing, intensity and location of myelin protein gene reactivation preceding remyelination. This method could be used to elucidate whether such a reactivation occurs in multiple sclerosis brain tissue. Our results suggest that in mice, glial cells react to a demyelinating process with widespread MBP mRNA synthesis which may be triggered by a diffusible factor released in the demyelinated areas.  相似文献   

15.
Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus   总被引:37,自引:0,他引:37  
Bergles DE  Roberts JD  Somogyi P  Jahr CE 《Nature》2000,405(6783):187-191
Fast excitatory neurotransmission in the central nervous system occurs at specialized synaptic junctions between neurons, where a high concentration of glutamate directly activates receptor channels. Low-affinity AMPA (alpha-amino-3-hydroxy-5-methyl isoxazole propionic acid) and kainate glutamate receptors are also expressed by some glial cells, including oligodendrocyte precursor cells (OPCs). However, the conditions that result in activation of glutamate receptors on these non-neuronal cells are not known. Here we report that stimulation of excitatory axons in the hippocampus elicits inward currents in OPCs that are mediated by AMPA receptors. The quantal nature of these responses and their rapid kinetics indicate that they are produced by the exocytosis of vesicles filled with glutamate directly opposite these receptors. Some of these AMPA receptors are permeable to calcium ions, providing a link between axonal activity and internal calcium levels in OPCs. Electron microscopic analysis revealed that vesicle-filled axon terminals make synaptic junctions with the processes of OPCs in both the young and adult hippocampus. These results demonstrate the existence of a rapid signalling pathway from pyramidal neurons to OPCs in the mammalian hippocampus that is mediated by excitatory, glutamatergic synapses.  相似文献   

16.
Structure, expression and function of a schwannoma-derived growth factor   总被引:5,自引:0,他引:5  
H Kimura  W H Fischer  D Schubert 《Nature》1990,348(6298):257-260
During the development of the nervous system, cells require growth factors that regulate their division and survival. To identify new growth factors, serum-free growth-conditioned media from many clonal cell lines were screened for the presence of mitogens for central nervous system glial cells. A cell line secreting a potent glial mitogen was established from a tumour (or 'schwannoma') derived from the sheath of the sciatic nerve. The cells of the tumour, named JS1 cells, were adapted to clonal culture and identified as Schwann cells. Schwann cells secrete an autocrine mitogen and human schwannoma extracts have mitogenic activity on glial cells. Until now, neither mitogen has been purified. Here we report the purification and characterization of a mitogenic molecule, designated schwannoma-derived growth factor (SDGF), from the growth-conditioned medium of the JS1 Schwann cell line. SDGF belongs to the epidermal growth factor family, and is an autocrine growth factor as well as a mitogen for astrocytes, Schwann cells and fibroblasts.  相似文献   

17.
Induction of glia-derived nexin after lesion of a peripheral nerve   总被引:10,自引:0,他引:10  
R Meier  P Spreyer  R Ortmann  A Harel  D Monard 《Nature》1989,342(6249):548-550
  相似文献   

18.
THY-1, the smallest member of the immunoglobulin superfamily, is a major cell-surface component expressed by several tissues. The protein, carbohydrate and gene structures of this molecule are known, yet its function is not. It is highly expressed in nervous tissue, where it appears on virtually all neurons after the cessation of axonal growth. Here we show that expression of Thy-1 by a neural cell line inhibits neurite outgrowth on mature astrocytes, but not on other cellular substrata which include Schwann cells and embryonic glia. This inhibition of neurite extension on astrocytes can be reversed by low concentrations (nanomolar) of soluble Thy-1. If a similar interaction between neuronal Thy-1 and astrocytes occurs in vivo, it could stabilize neuronal connections and suppress axonal regrowth after injury in the astrocyte-rich areas of adult central nervous system.  相似文献   

19.
Ransohoff RM  Cardona AE 《Nature》2010,468(7321):253-262
A microglial cell is both a glial cell of the central nervous system and a mononuclear phagocyte, which belongs to the haematopoietic system and is involved in inflammatory and immune responses. As such, microglia face a challenging task. The neurons of the central nervous system cannot divide and be replenished, and therefore need to be protected against pathogens, which is a key role of the immune system, but without collateral damage. In addition, after physical injury, neural cells need restorative support, which is provided by inflammatory responses. Excessive or chronic inflammatory responses can, however, be harmful. How microglia balance these demands, and how their behaviour can be modified to ameliorate disorders of the central nervous system, is becoming clear.  相似文献   

20.
H Wang  M Tessier-Lavigne 《Nature》1999,401(6755):765-769
During development, neurons extend axons to their targets, then become dependent for their survival on trophic substances secreted by their target cells. Competition for limiting amounts of these substances is thought to account for much of the extensive naturally-occurring cell death that is seen throughout the nervous system. Here we show that spinal commissural neurons, a group of long projection neurons in the central nervous system (CNS), are also dependent for their survival on trophic support from one of their intermediate targets, the floor plate of the spinal cord. This dependence occurs during a several-day-long period when their axons extend along the floor plate, following which they develop additional trophic requirements. A dependence of neurons on trophic support derived en passant from their intermediate axonal targets provides a mechanism for rapidly eliminating misprojecting neurons, which may help to prevent the formation of aberrant neuronal circuits during the development of the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号