首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The product of the T-cell receptor (TCR) gamma-gene has recently been found to be expressed on a subset of both peripheral cells and thymocytes. As an initial approach to understanding the role of this gamma-chain of TCR (TCR gamma) in T-cell development, we have studied the ontogeny of TCR expression at the protein level in the developing murine thymus. We show here that the first T3-associated TCR to be expressed in the developing thymus is a disulphide-linked heterodimer composed of a gamma-chain of relative molecular mass 35,000 (Mr 35K) and a 45K partner (termed TCR delta). This TCR gamma delta is first detected approximately two days before the appearance of cell-surface TCR alpha beta heterodimers. We report that N-glycosidase digestions reveal that all of the gamma-protein expressed on fetal thymocytes, as in adult CD4-8-(L3T4-, Lyt2-) thymocytes, bear N-linked carbohydrate side chains. The major gamma-gene transcribed in mature, alpha beta-bearing T cells (V gamma 1.2C gamma 2)encodes no N-linked glycosylation site so these results suggest that the fetal gamma delta receptor defines a distinct T-cell lineage whose development in the thymus precedes classical alpha beta-bearing cells.  相似文献   

3.
M P Lefranc  A Forster  T H Rabbitts 《Nature》1986,319(6052):420-422
Selective cloning procedures for T-cell-specific complementary DNAs have revealed the existence of a gene designated gamma as well as the main antigen receptor alpha- and beta-chain genes. The gamma-chain genes undergo rearrangement during T-cell differentiation but the patterns and complexity of such rearrangements differ markedly in mouse and human. In mouse, a panel of cytotoxic T-lymphocyte clones exhibit the same rearrangement pattern with a gamma-chain gene probe and a set of three gamma-chain variable (V) genes have been identified in the DNA. Clonal diversity in mouse seems to be confined to V-J (joining) regions. In contrast, human T-cell lines exhibit diverse rearrangements suggestive of a family of differing V gamma genes variously rearranging to the two gamma-chain constant (C) region genes. Here we report the cloning of two very different V gamma genes rearranged to J segments upstream of the two human C gamma genes. Both V gamma genes are rearranged productively but nucleotide sequence comparison shows that they possess very little homology with each other. This shows that human T-cell V gamma genes exist which differ significantly from each other at the nucleotide level and that such diverse genes can be usefully rearranged in different T cells.  相似文献   

4.
5.
Limited diversity of the rearranged T-cell gamma gene   总被引:1,自引:0,他引:1  
D M Kranz  H Saito  M Heller  Y Takagaki  W Haas  H N Eisen  S Tonegawa 《Nature》1985,313(6005):752-755
  相似文献   

6.
L A Matis  R Cron  J A Bluestone 《Nature》1987,330(6145):262-264
Several recent studies have identified a distinct subset of CD3(T3)+CD4-CD8-T lymphocytes that express a CD3-associated heterodimer made up of the protein encoded by the T-cell receptor (TCR) gamma-gene and a second glycoprotein termed TCR delta (refs 1-4). TCR gamma delta is expressed on CD3+ thymocytes during fetal ontogeny before the appearance of TCR alpha-beta (alpha beta) (refs 5-7), on CD3+CD4-CD8- adult thymocytes, and on a subset (1-10%) of CD3+ cells in adult peripheral lymphoid organs and the peripheral blood. TCR gamma delta-expressing T cells probably represent a distinct mature T-cell lineage with the capacity to proliferate in response to receptor-mediated signals, and to display non-major histocompatibility complex (MHC)-restricted cytolysis. Critical to understanding the function of this T-cell subset is the identification of the ligand(s) recognized by TCR gamma delta. Here we describe an alloreactive CD3+CD4-CD8-TCR gamma delta-expressing, TCR alpha beta-negative, T-cell line that manifests MHC-linked recognition specificity for both proliferation and cytotoxicity. Our results suggest that T cells expressing TCR gamma delta are capable of self-non-self MHC discrimination and that they can undergo MHC-influenced selection during differentiation like TCR alpha beta-expressing T cells.  相似文献   

7.
N Nakanishi  K Maeda  K Ito  M Heller  S Tonegawa 《Nature》1987,325(6106):720-723
During the search for genes coding for the mouse alpha and beta subunits of the antigen-specific receptor of mouse T cells we encountered a third gene, subsequently designated gamma. This gene has many properties in common with the alpha and beta genes, somatic assembly from gene segments that resemble the gene segments for immunoglobulin variable (V), joining (J) and constant (C) regions; rearrangement and expression in T cells and not in B cells; low but distinct sequence homology to immunoglobulin V, J and C regions; other sequences that are reminiscent of the transmembrane and intracytoplasmic regions of integral membrane proteins; and a cysteine residue at the position expected for a disulphide bond linking two subunits of a dimeric membrane protein. Despite these similarities the gamma gene also shows some interesting unique features. These include a relatively limited repertoire of the germ-line gene segments, more pronounced expression at the RNA level in immature T cells such as fetal thymocytes and an apparent absence of in-frame RNA in some functional, alpha beta heterodimer-bearing T cells or cultured T clones and hybridomas. To understand the function of the putative gamma protein it is essential to define the cell population that expresses this protein. To this end we produced a fusion protein composed of Escherichia coli beta-galactosidase and the gamma-chain (hereafter referred to a beta-gal-gamma) using the phage expression vector lambda gt11 and raised rabbit antisera against the gamma determinants. Using the purified anti-gamma antibody we detected a polypeptide chain of relative molecular mass 35,000 (Mr 35K) on the surface of 16-day old fetal thymocytes. The gamma-chain is linked by a disulphide bridge to another component of 45K. No such heterodimer was detected on the surface of a cytotoxic T lymphocyte (CTL) clone 2C from which an in-phase gamma cDNA clone was originally isolated.  相似文献   

8.
Three gene families that rearrange during the somatic development of T cells have been identified in the murine genome. Two of these gene families (alpha and beta) encode subunits of the antigen-specific T-cell receptor and are also present in the human genome. The third gene family, designated here as the gamma-chain gene family, is rearranged in murine cytolytic T cells but not in most helper T cells. Here we present evidence that the human genome also contains gamma-chain genes that undergo somatic rearrangement in leukaemia-derived T cells. Murine gamma-chain genes appear to be encoded in gene segments that are analogous to the immunoglobulin gene variable, constant and joining segments. There are two closely related constant-region gene segments in the human genome. One of the constant-region genes is deleted in all three T-cell leukaemias that we have studied. The two constant-region gamma-chain genes reside on the short arm of chromosome 7 (7p15); this region is involved in chromosomal rearrangements identified in T cells from individuals with the immunodeficiency syndrome ataxia telangiectasia and observed only rarely in routine cytogenetic analyses of normal individuals. This region is also a secondary site of beta-chain gene hybridization.  相似文献   

9.
M P Lefranc  T H Rabbitts 《Nature》1985,316(6027):464-466
The recent detailed analysis of genes that undergo rearrangement in T cells has shown that the T-cell receptor genes encoding alpha- and beta-chains are involved in specific alterations in T-cell DNA analogous to the immunoglobulin genes. A third type of gene, designated gamma, has been isolated from mouse cytotoxic T lymphocytes, and evidence suggest that the mouse displays very limited diversity in this gene system, having only three variable-region (V) genes and three constant-region (C) genes. The function of the so-called T-cell gamma gene is unknown. We have isolated genomic genes encoding the human homologue of the mouse T-cell gamma gene; as there is no evidence that this T-cell rearranging gene is anything to do with the T3 molecule, we have designated the human T-cell rearranging gene as TRG gamma (ref. 13), to avoid confusion with the T3 gamma-chain, and have shown that the gene locus maps to chromosome 7 in humans. We now report that human DNA contains two tandemly arranged TRG gamma constant-region genes about 16 kilobases apart. These two genes show multiple rearrangement patterns in a variety of T cells, including helper and cytotoxic/suppressor type, as well as in all forms of T-cell leukaemia. Our results indicate variability of this T-cell gene system in man compared with the analogous system in mouse.  相似文献   

10.
N Suciu-Foca  E Reed  P Rubinstein  W MacKenzie  A K Ng  D W King 《Nature》1985,318(6045):465-467
T lymphocytes possessing helper function produce soluble factors that greatly augment B-cell proliferation and differentiation into antibody-secreting cells. In humans the subset of T lymphocytes bearing the T4 surface antigen comprises most of the cells that display helper activity and recognize class II antigens of the major histocompatibility complex (MHC), while the subset bearing the T8 antigen comprises T cells recognizing class I MHC antigens and exhibiting cytotoxic or suppressor function. Monoclonal antibodies to T4 or T8 greatly inhibit the cognitive and effector function of cells with the corresponding phenotype. This function/phenotype correlation is not absolute, however, for there are many examples of T8-positive clones that recognize MHC class II antigens and have helper activity, as well as of T4-positive clones with suppressor or cytotoxic function. Recently a family of cell-surface neoantigens, which might be relevant to T-cell function and which are present on activated but not on resting T lymphocytes, has been identified in mouse and humans using monoclonal antibodies. Some of these antibodies block the cytolytic activity of alloreactive T-cell clones, suggesting the possible involvement of such molecules in the activation of cytotoxic T-cell clones or in the lytic process itself. We now describe a similar late-differentiation antigen (LDA1) that is expressed by human T lymphocytes only following activation and is recognized by a monoclonal antibody that inhibits the antibody-inducing helper function of T lymphocytes.  相似文献   

11.
In B cells the loci encoding immunoglobulin chains usually show allelic exclusion; a given B cell transcribes and translates only one productively rearranged allele of the heavy and light chain loci. This ensures that each B cell expresses only one antigen receptor. The loci encoding T-cell receptor (TCR) alpha- and beta-genes may behave similarly. We have previously reported that the expression of a transgenic TCR beta-chain prevents functional and nonfunctional V beta rearrangements in the endogenous beta-chain loci but not D beta J beta rearrangements. We have also been unable to detect the expression of the TCR gamma-chain locus in thymocytes of these mice (unpublished observations). To study the mechanisms involved in forming a mature T-cell repertoire further, we have constructed mice expressing alpha- and beta-TCR transgenes derived from a cytotoxic T-cell clone that is specific for the male antigen H-Y in the context of H-2Db MHC molecules. Here we show that in these mice rearrangement of endogenous alpha-chain loci is also suppressed, although to a lesser extent than rearrangement of beta-chain loci. In addition, in male alpha beta TCR transgenic mice we observed T-cell clones which had deleted both transgenic alpha- and beta-chain genes and expressed endogenous alpha- and beta-chain TCR genes. These cells are presumably derived from rare thymocytes that leave the male thymus because their TCR no longer recognizes self antigen. The vast majority of CD4+8+ nonmature thymocytes expressing alpha- and beta-transgenes are deleted in the male thymus.  相似文献   

12.
Peptide-dependent recognition of H-2Kb by alloreactive cytotoxic T lymphocytes   总被引:10,自引:0,他引:10  
W R Heath  M E Hurd  F R Carbone  L A Sherman 《Nature》1989,341(6244):749-752
Antigen-specific T lymphocytes appear to recognize foreign antigens in the form of peptide fragments presented within the antigen-binding groove of class I or class II molecules encoded by the major histocompatibility complex (MHC). Alloreactive T cells also show specificity for MHC molecules, and various reports suggest that residues of the MHC molecules constitute at least part of the ligand to which alloreactive T-cell receptors bind. The X-ray crystal structure of the human MHC class I molecule, HLA-A2, has provided evidence to strengthen the argument that MHC-bound self-peptide might also contribute to such recognition. We now provide direct evidence for this, showing that at least some alloreactive cytotoxic T lymphocyte clones recognize peptide fragments derived from cytoplasmic proteins. We reasoned that if self-peptides were involved in allorecognition, then the sequence of some of these peptides could vary between species, resulting in species-restricted distribution of the relevant ligand(s). Several alloreactive cytotoxic T lymphocyte clones specific for H-2Kb, expressed by the murine cell line EL4, did not lyse a human-cell transfectant expressing the H-2Kb molecule (Jurkat-Kb cells). However, these clones were able to lyse Jurkat-Kb cells sensitized by preincubation with an EL4 cytoplasmic extract cleaved by cyanogen bromide. The sensitizing activity from this extract was destroyed by protease and appeared to be due to a peptide consisting of 10 to 15 amino acids.  相似文献   

13.
The majority of human T cells express an antigen receptor consisting of a disulphide-linked heterodimer (Ti) of relative molecular mass 80,000-90,000 (Mr 80-90K) which is noncovalently associated with a set of at least three proteins of Mr 20-28K termed CD3 (Leu4, T3). Whereas both chains of Ti, an acidic alpha-chain of Mr 48-54K and a more basic beta-chain of Mr 40-44K, contain variable and constant region domains, the component peptides of CD3 are invariant. Several laboratories have more recently reported the expression of CD3 in association with a novel protein. On the surface of long-term T-cell lines and one thymocyte clone this novel structure consists of a 40K protein noncovalently linked to a 55 or 62K protein identified as the protein product of the Ti gamma-chain gene, a T-cell specific gene which like the Ti alpha- and Ti beta-chain genes undergoes rearrangement of variable (V) and joining (J) region gene segments. On the human T-cell leukaemic line PEER we have detected only a single 55K glycoprotein associated with CD3. We here demonstrate that an anti-Ti gamma-peptide antiserum reacts with the 55K CD3-associated protein on PEER. Most previously described human Ti gamma-chain complementary DNA clones encode the products of non-functional rearrangements. One of the Ti gamma cDNAs isolated from PEER, however, represents a functional rearrangement reported for the first time in a cell which expresses a Ti gamma-chain protein product on the cell surface. Interestingly, a 48-base-pair (bp) sequence in the constant (C) region domain of this functional Ti gamma-chain cDNA is triplicated in PEER and duplicated in other cDNAs isolated from PEER and other cell lines.  相似文献   

14.
Subtractive complementary DNA cloning combined with partial protein sequencing has allowed identification of the genes encoding the alpha and beta subunits of T-cell receptors. The subtractive cDNA library prepared from the cytotoxic T lymphocyte (Tc) clone 2C has been found to contain a third type of clone encoding the gamma chain. The gamma gene shares several features with the alpha and beta genes: (1) assembly from gene segments resembling immunoglobulin V, J and C (respectively variable, joining and constant region) DNA segments; (2) rearrangement and expression in T cells and not in B cells; (3) sequences reminiscent of transmembrane and intracytoplasmic regions of integral membrane proteins; (4) a cysteine residue at the position expected for an interchain disulphide bond. The alpha and beta genes are expressed at equivalent levels in both Tc cells and helper T cells (TH). The gamma gene, obtained from 2C, has been found to be expressed in all Tc cells studied. Here we present evidence that strongly suggests that TH cells do not require gamma gene expression.  相似文献   

15.
F Rupp  H Acha-Orbea  H Hengartner  R Zinkernagel  R Joho 《Nature》1985,315(6018):425-427
T lymphocytes involved in the cellular immune response carry cell-surface receptors responsible for antigen and self recognition. This T-cell receptor molecule is a heterodimeric protein consisting of disulphide-linked alpha- and beta-chains with variable (V) and constant (C) regions. Several complementary DNA and genomic DNA clones have been isolated and characterized. These analyses showed that the genomic arrangement and rearrangement of T-cell receptor genes using VT, diversity (DT), joining (JT) and CT gene segments is very similar to the structure of the known immunoglobulin genes. We have isolated two cDNA clones from an allospecific cytotoxic T cell, one of which shows a productive V beta-J beta-C beta 1 rearrangement without an intervening D beta segment. This V beta gene segment is identical to the V beta gene expressed in a helper T-cell clone specific for chicken red blood cells and H-21. The other clone carries the C beta 2 gene of the T-cell receptor, but the C beta 2 sequence is preceded by a DNA sequence that does not show any similarity to V beta or J beta sequences.  相似文献   

16.
R L Modlin  M B Brenner  M S Krangel  A D Duby  B R Bloom 《Nature》1987,329(6139):541-545
Cells which can suppress the immune response to an antigen (TS cells) appear to be essential for regulation of the immune system. But the characterization of the TS lineage has not been extensive and many are sceptical of studies using uncloned or hybrid T-cell lines. The nature of the antigen receptor on these cells is unclear. T cells of the helper or cytotoxic lineages appear to recognize their targets using the T-cell receptor (TCR) alpha beta-CD3 complex. TCR beta-gene rearrangements are also found in some murine and human suppressor cell lines but others have been shown not to rearrange or express the beta-chain or alpha-chain genes. We previously established TS clones derived from lepromatous leprosy patients which carry the CD8 antigen and recognize antigen in the context of the major histocompatibility complex (MHC) class II molecules in vitro. We here report the characterization of additional MHC-restricted TS clones which rearrange TCR beta genes, express messenger RNA for the alpha and beta chains of the TCR and express clonally unique CD3-associated TCR alpha beta structures on their cell surface but do not express the gamma chain of the gamma delta TCR on the cell surface. We conclude that antigen recognition by at least some human CD8+ suppressor cells is likely to be mediated by TCR alpha beta heterodimers.  相似文献   

17.
T lymphocytes recognize cell-bound antigens in the molecular context of the self major histocompatibility complex (MHC) gene products through the surface T-cell receptor(s). The minimal component of the T-cell receptor is a heterodimer composed of alpha and beta subunits, each of relative molecular mass (Mr) approximately 45,000 (refs 1-3). Recently, complementary DNA clones encoding these subunits have been isolated and characterized along with that of a third subunit of unknown function, termed gamma (refs 4-9). These studies revealed a primary structure for each subunit that was clearly similar to that of immunoglobulin and indicated a somatic rearrangement of corresponding genes that are also immunoglobulin-like. Recently, the analysis of the sequence organization of the T-cell receptor beta-chain and T-cell-specific gamma-chain gene families has been reported. We now present an initial characterization of the murine T-cell receptor alpha-chain gene family, and conclude that although it is clearly related to the gene families encoding immunoglobulins, T-cell receptor beta-chains and also T-cell gamma-chains, it shows unique characteristics. There is only a single constant (C) region gene segment, which is an exceptionally large distance (approximately 20-40 kilobases (kb) in the cases studied here) from joining (J) gene segments. In addition, the J cluster and the variable (V) segment number seen to be very large. Finally, in the case studied here, a complete alpha-chain gene shows no somatic mutation and can be assembled directly from V alpha, J alpha and C alpha segments without inclusion of diversity (D alpha) segments.  相似文献   

18.
I Bank  R A DePinho  M B Brenner  J Cassimeris  F W Alt  L Chess 《Nature》1986,322(6075):179-181
The known T-cell receptors (TCRs) involved in the recognition of antigen and major histocompatibility complex (MHC) molecules are glycoproteins comprised of polymorphic disulphide-linked alpha- and beta-chains. The genes encoding these chains are homologous to immunoglobulin genes and consist of V (variable), J (joining) and C (constant) regions that rearrange during development. TCRs are expressed relatively late in thymocyte development and only in association with an invariant molecular complex of proteins termed T3. Immature thymocytes do not express the TCR-T3 complex but do express messenger RNA encoding a third rearranging T-cell receptor-like gene, termed T gamma. Here we report a clone of normal immature T4-T8- human thymocytes, designated CII, which does not express mature mRNA for T alpha or T beta genes, but does express high levels of T gamma mRNA. This clone also expresses high levels of surface T3, and antibodies to T3 induce immunologically relevant functions in CII cells. Immunoprecipitation of CII surface-labelled proteins with anti-T3 co-precipitates a T3 molecular complex together with two additional and novel peptides of relative molecular mass (Mr), 44,000 (44K) and 62,000 (62K).  相似文献   

19.
In addition to expressing clonally distributed antigen-specific and major histocompatibility complex (MHC)-restricted receptors, T cells also express non-clonally distributed surface molecules that are involved in T-cell function. Among the most intriguing of the latter are L3T4 and Lyt 2, which are expressed on individual T lymphocytes in striking, though not absolute, concordance with their restriction by either class II or class I MHC determinants, and which are thought to contribute to the overall avidity of T-cell interactions by binding to monomorphic determinants on class II and class I MHC molecules, respectively. To examine the ability of T cells to recognize a single class II domain in the absence of the remainder of the Ia molecule, as well as to evaluate the structural basis for the putative interaction of L3T4 with Ia, a recombinant class II/class I murine MHC gene was constructed and introduced into mouse L cells. Here we demonstrate that a subset of class II allospecific cytotoxic T lymphocytes (CTL) can specifically recognize and lyse L-cell transfectants expressing an isolated polymorphic A beta 1 domain, and that anti-L3T4 antibody can block such killing, a result inconsistent with the highly conserved membrane-proximal domains of Ia acting as unique target sites for L3T4 binding.  相似文献   

20.
Blockage of alpha beta T-cell development by TCR gamma delta transgenes   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号