首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional analysis of the human MCL-1 gene   总被引:6,自引:0,他引:6  
  相似文献   

2.
3.
4.
5.
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. It involves initiation factor-mediated assembly of a 40S ribosomal subunit and initiator tRNA into a 48S initiation complex at the initiation codon of an mRNA and subsequent joining of a 60S ribosomal subunit to form a translationally active 80S ribosome. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their individual functions in this process. The mechanism of translation initiation has also been found to be influenced significantly by structural properties of the 5' and 3' termini of individual mRNAs. This review describes some of the major developments in elucidating molecular details of the mechanism of initiation that have occurred over the last decade.  相似文献   

6.
Organization and expression of the poxvirus genome   总被引:19,自引:0,他引:19  
Summary Poxviruses comprise a large group of very complex animal DNA viruses which replicate in the cytoplasm of infected cells. Vaccinia virus, the most studied poxvirus, has a linear, double stranded DNA genome with an approximate molecular weight of 120×106 (180 kilobase pairs). The two strands of the DNA molecule are naturally cross-linked at both termini. In addition, the vaccinia virus genome contains very long inverted terminal repetitions of approximately 10 kilobase pairs which are further characterized by the presence of direct tandem repeats of a 70-base-pair sequence arranged in two blocks of 13 and 17 copies, respectively. A central region of the genome is highly conserved between different orthopoxviruses. In contrast, the ends are hypervariable and may contain extensive deletions and complex, symmetrical sequences rearrangements. Vaccinia virus gene expression is divided into two stages. Early in infection, RNA complementary to one half of one strand-equivalent of the genome is transcribed within subviral particles by the virion-associated RNA polymerase. Later in infection, after DNA replication, RNA complementary to one entire strand-equivalent is transcribed. RNA made late in infection is very heterogeneous in length and a large fraction of it contains self-complementary sequences. Late genes are clustered near the central region of the genome. Vaccinia virus mRNAs do not appear to be synthesized by a splicing mechanism.  相似文献   

7.
Dictyostelium discoideum is a eukaryotic microorganism that is attractive for the study of fundamental biological phenomena such as cell-cell communication, formation of multicellularity, cell differentiation and morphogenesis. Large-scale sequencing of the D. discoideum genome has provided new insights into evolutionary strategies evolved by transposable elements (TEs) to settle in compact microbial genomes and to maintain active populations over evolutionary time. The high gene density (about 1 gene/2.6 kb) of the D. discoideum genome leaves limited space for selfish molecular invaders to move and amplify without causing deleterious mutations that eradicate their host. Targeting of transfer RNA (tRNA) gene loci appears to be a generally successful strategy for TEs residing in compact genomes to insert away from coding regions. In D. discoideum, tRNA gene-targeted retrotransposition has evolved independently at least three times by both non-long termina l repeat (LTR) retrotransposons and retrovirus-like LTR retrotransposons. Unlike the nonspecifically inserting D. discoideum TEs, which have a strong tendency to insert into preexisting TE copies and form large and complex clusters near the ends of chromosomes, the tRNA gene-targeted retrotransposons have managed to occupy 75% of the tRNA gene loci spread on chromosome 2 and represent 80% of the TEs recognized on the assembled central 6.5-Mb part of chromosome 2. In this review we update the available information about D. discoideum TEs which emerges both from previous work and current large-scale genome sequencing, with special emphasis on the fact that tRNA genes are principal determinants of retrotransposon insertions into the D. discoideum genome. Received 10 May 2002; received after revision 10 June 2002; accepted 12 June 2002 RID="*" ID="*"Corresponding author.  相似文献   

8.
Novel features in the tRNA-like world of plant viral RNAs   总被引:7,自引:0,他引:7  
tRNA-like domains are found at the 3' end of genomic RNAs of several genera of plant viral RNAs. Three groups of tRNA mimics have been characterized on the basis of their aminoacylation identity (valine, histidine and tyrosine) for aminoacyl-tRNA synthetases. Folding of these domains deviates from the canonical tRNA cloverleaf. The closest sequence similarities with tRNA are those found in valine accepting structures from tymoviruses (e.g. TYMV). All the viral tRNA mimics present a pseudoknotted amino acid accepting stem, which confers special structural and functional characteristics. In this review emphasis is given to newly discovered tRNA-like structures (e.g. in furoviruses) and to recent advances in the understanding of their three-dimensional architecture, which mimics L-shaped tRNA. Identity determinants in tRNA-like domains for aminoacylation are described, and evidence for their functional expression, as in tRNAs, is given. Properties of engineered tRNA-like domains are discussed, and other functional mimicries with tRNA are described (e.g. interaction with elongation factors and tRNA maturation enzymes). A final section reviews the biological role of the tRNA-like domains in amplification of viral genomes. In this process, in which the mechanisms can vary in specificity and efficiency according to the viral genus, function can be dependent on the aminoacylation properties of the tRNA-like domains and/or on structural properties within or outside these domains.  相似文献   

9.
Evidence that miRNAs are different from other RNAs   总被引:13,自引:0,他引:13  
An examination of 513 known pre-miRNAs and 237 other RNAs (tRNA, rRNA, and mRNA) revealed that miRNAs were significantly different from other RNAs (p < 0.001). miRNA genes were less conserved than other RNA genes, although their mature miRNA sequences were highly conserved. The A+U content of pre-miRNAs was higher than non-coding RNA (p < 0.001), but lower than mRNAs. The nucleotides in pre-miRNAs formed more hydrogen bonds and base pairs than in other RNAs. miRNAs had higher negative adjusted minimal folding free energies than other RNAs except tRNAs (p < 0.001). The MFE index (MFEI) was a sufficient criterion to distinguish miRNAs from all coding and non-coding RNAs (p < 0.001). The MFEI for miRNAs was 0.97, significantly higher than tRNAs (0.64), rRNAs (0.59), or mRNAs (0.65). Our findings should facilitate the prediction and identification of new miRNAs using computational and experimental strategies. Received 5 October 2005; received after revision 4 November 2005; accepted 16 November 2005  相似文献   

10.
11.
12.
13.
Genetics of toxin production and resistance in phytopathogenic bacteria   总被引:2,自引:0,他引:2  
Genes for phytotoxin production have been identified and cloned from several phytopathogenic pseudomonads. These genes comprise physically linked clusters that have been located both on the chromosome and on endogenous plasmids. Contained within these genetic regions are resistance genes specific to those toxins that have a bactericidal component to their activity. DNA sequences required for toxin production are often conserved among bacteria with divergent host specificities, suggesting the ability of toxin genes to be transferred between bacteria. Toxins are usually modulators of plant pathogenicity, their production causing a significant increase in disease severity. In one case, however, toxin production appears to be a major contributor to the basic pathogenicity of a plant pathogenic bacterium.  相似文献   

14.
15.
Recent advances in androgen receptor action   总被引:17,自引:0,他引:17  
  相似文献   

16.
Diversity and roles of (t)RNA ligases   总被引:1,自引:1,他引:0  
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.  相似文献   

17.
18.
19.
We have studied the chemistry of aminoacyl AMP to model reactions at the 3' terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5'-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The beta-branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the gamma-branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with adenine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.  相似文献   

20.
The primary structure of mitochondrial tRNAPhe from Saccharomyces cerevisiae, purified by two-dimensional polyacrylamide gel electrophoresis, was determined using, standard procedures on in vivo 32P-labeled tRNA, as well as the new 5'-end postlabeling techniques. We propose a cloverleaf model which allows for tertiary interaction between cytosine in position 46 and guanine in position 15 and maximizes base pairing in the psi C stem, thus excluding the uracile in position 50 from base pairing in the psi C stem. Comparison of the primary structure of this tRNA with all other known procaryotic, chloroplastic or cytoplasmic tRNAsPhe sequences does not lead to any conclusion about the endosymbiotic theory of mitochondria evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号