首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study,TiO2@MgO core-shell film was obtained by using a simple chemical bath deposition method to coat a thin MgO film around TiO2 nanoparticles. The core-shell configuration was characterized by X-ray diffractometer (XRD),scanning elec-tron microscopy (SEM),energy dispersive X-ray spectroscopy (EDX),and high-resolution transmission electron microscopy (HRTEM). Lattice fringes were observed for the TiO2 particles,and the MgO shell showed an amorphous structure,revealing a clear distinction between the core and shell materials. Applying the core-shell film as photoanode to the dye-sensitized solar cells (DSSCs),it shows a superior performance compared to the pure TiO2 electrode. Under the illumination of simulated sunlight (75 mW-cm-2),the short circuit photocurrent (Jsc),the open circuit photovoltage (Voc),and the fill factor (fF) are 8.80 mA-cm-2,646 mV,and 0.69,respectively,and the conversion efficiency (η) in-creased by 21.8% (from 4.32% to 5.26%) when dipping for opti-mum condition.  相似文献   

2.
A TiO2@SiO2 hybrid support was prepared by the sol-precipitation method using n-octylamine as a template.The photocatalyst manganese phthalocyanine tetrasulfonic acid (MnPcS) was immobilized on the support to form MnPcS-TiO2@SiO2.X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were employed to characterize the catalyst.The photocatalytic degradation of rhodamine B (RhB) and the catalytic oxidation of o-phenylenediamine (OPDA) under visible light irradiation were used as probe reactions.The mineralization efficiency and the degradation mechanism were evaluated using chemical oxygen demand (COD Cr) assays and electron spin resonance (ESR),respectively.RhB was efficiently degraded by immobilized MnPcS-TiO2@SiO2 under visible light irradiation.Complete decolorization of RhB occurred after 240 min of irradiation and 64.02% COD Cr removal occurred after 24 h of irradiation.ESR results indicated that the oxidation process was dominated by the hydroxyl radical (·OH) and superoxide radical (O-·2) generated in the system.  相似文献   

3.
Zn-doped titanium oxide (TiO2) nanotubes electrode was prepared on a titanium plate by direct anodic oxidation and immersing method in sequence. Field emission scanning electron microscopy (FESEM) showed that the Zn-doped TiO2 nanotubes were well aligned and organized into high density uniform arrays with diameter ranging from 50 to 90 nm. The length and the thickness were about 200 and 15 nm respectively. TiO2 anatase phase was identified by X-ray diffraction (XRD). X-ray photoelectronspectroscopy (XPS) indicated that Zn ions were mainly located on the surface of TiO2 nanotubes in form of ZnO clusters. Compared with TiO2 nanotubes electrode, about 20 nm red shift in the spectrum of UV-vis absorption was observed. The degradation of pentachlorophenol (PCP) in aqueous solution under the same condition (initial concentration of PCP: 20 mg/L; concentration of Na2SO4:0.01 mol/L and pH: 7.03) was carried out using Zn-doped TiO2 nanotubes electrode and TiO2 nanotubes electrode. The degradation rates of PCP using Zn-doped TiO2 nanotubes electrode were found to be twice and 5.8 times as high as that using TiO2 nanotubes electrode by UV radiation (400 μw/cm^2) and visible light radiation (4500 μw/cm^2), respectively. 73.5% of PCP was removed using Zn-doped TiO2 nanotubes electrode against 45.5% removed using TiO2 nanotubes electrode in 120 min under UV radiation. While under visible light radiation, the degradation efficiency of PCP was 18.4% using Zn-doped TiO2 nanotubes electrode against 3.2% using TiO2 nanotubes electrode in 120 min. The optimum concentration of Zn doping was found to be 0.909%. The PCP degradation efficiencies of the 10 repeated experiments by Zn-doped TiO2 nanotubes electrode were rather stable with the deviation within 3.0%.  相似文献   

4.
To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells, carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method. The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy of adsorbed probe ammonia molecules. The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique. The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes. It is explained that, the structure, the oxidation states, and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoO x to the Pt-based catalysts.  相似文献   

5.
Climate change and the consumption of non-renewable resources are considered as the greatest problems facing humankind.Because of this,photocatalysis research has been rapidly expanding.TiO2 nanoparticles have been extensively investigated for photocatalytic applications including the decomposition of organic compounds and production of H2 as a fuel using solar energy. This article reviews the structure and electronic properties of TiO2,compares TiO2 with other common semiconductors used for photocatalytic applications and clarifies the advantages of using TiO2 nanoparticles.TiO2 is considered close to an ideal semi- conductor for photocatalysis but possesses certain limitations such as poor absorption of visible radiation and rapid recombination of photogenerated electron/hole pairs.In this review article,various methods used to enhance the photocatalytic characteristics of TiO2 including dye sensitization,doping,coupling and capping are discussed.Environmental and energy applications of TiO2, including photocatalytic treatment of wastewater,pesticide degradation and water splitting to produce hydrogen have been summarized.  相似文献   

6.
A TiO2 paste was prepared by mixing commercial TiO2 (P25), ethanol, distilled water and a small amount of Ti (IV) tetrai-sopropoxide (TTIP), following by a hydrothermal treatment. Before hydrothermal treatment, a stirring for 48 h can prevent cracking TiO2 films. TTIP significantly promote the chemical connection between TiO2 particles and its adherence to the substrate, the TTIP amount of 6 mol% is suitable. UV irradiation can remove some impurities and water from the TiO2 film with an optimal time of 2 h. Transmission electron microscopy, X-ray diffraction, scanning electron microscopy and photovoltaic tests are charac- terized and measured. Shortcircuit current density, open-circuit voltage, fill factor and photoelectric conversion efficiencies for the fabricated flexible dye-sensitized solar cell are 7.20 mA cm-2, 0.769 V, 0.686 and 3.84%, respectively, under irradiation with a simulated solar light of 100 mW cm-2.  相似文献   

7.
Nitrogen and sulfur doped titanium dioxide photocatalysts were prepared by the sol-gel method. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-visible diffuse reflectance spectra (DRS). Photocatalytic activities of the samples were investigated on the degradation of methyl orange (MO). The effect of the dopants on the electronic structure of TiO2 was studied by the first-principles calculations based on the density functional theory (DFT). The orbital hybridization resulted in energy gap narrowing and electronic delocalization in the crystal of doped TiO2. Mobile electrons of varied energetic states could offer enhanced electron transfer, together with optical absorption improvement. The results show that the doping elements of N and S play a cooperative role in the modification of electronic structure, which enhances the photocatalytic performance. The experimentally observed absorption edges of N-doped TiO2, S-doped TiO2, and N, S-codoped TiO2 are 420, 413, and 429 nm, respectively, which can be explained by the theoretical calculation results.  相似文献   

8.
Nanocrystalline TiO2 is a very important inorganic semiconductor function material with a wild band gap of 3.0-3.2 eV. Owing to its characteristics of selectiveabsorption for UV light, it has been extensively applied in photocatalysts, dye-sensitized sola…  相似文献   

9.
Synthesis and Structure of Polypyrrole Derivatives/V2O5 Nanocomposites   总被引:1,自引:0,他引:1  
Poly ( N, N, N-trimethyl ( 2-pyrrol-l-yl ) ethyl ammonium iodide )/V2O5 ( PTPAI/V2O5) nanocomposites were synthesized by sol-gel method. This method involved formation of vanadium pentoxide xerogel in the prcscnce of polypyrrole derivatives solution. X-ray diffraction(XRD) indicated that the polypyrrole derivative particles encapsulated in the fibrous V2O5 network and the layered distance significantly increased from 1. 077 39 to 1. 354 56 nm. The interaction between polypyrrole and V2O5 in the ‘nanocomposites‘ was characterized by IR spectroscopy. The Scanning Electron Microscope(SEM) micrographs reveal the structural contrasts between the hybrid materials and the pristine vanadium oxide xerogel.  相似文献   

10.
In order to obtain TiO2 with high photocatalytic activity, a cathode reduction was used to dope I7+ and I5+ into TiO2 nanotubes of anodized Ti in C2H2O4•2H2O + NH4F electrolyte. SEM images show that the anodization method integrated the preparation with the doping process, which for nonmetals-doping is advantageous to maintain the morphological integrity of TiO2 nanotubes. I7+-I5+-doping enhances the UV response of TiO2 and result in a red-shift. Under UV/visible irradiation, a I7+-I5+-doped sample (400°C) showed the highest Iph and photocatalytic efficiency. A part of I in the I7+-I5+-doped sample is involved in the UV response, the red-shift and the higher Iph.  相似文献   

11.
Fabrication and S-F-codoping of TiO2 nanotubes were carried out by a one-step electrochemical anodization process to extend the photoresponse of TiO2 to the visible-light region. The prepared samples were annealed in air and detected by SEM, XRD, XPS and UV-vis DRS spectrophotometer. The results showed that the average tube diameter of the nanotubes was 150 nm and the average tube length was 400 nm. The doped TiO2 nanotubes exhibited strong absorption in visible-light region. Photoelectrocatalytic degradation efficiency of 4-CP over S-F-codoped TiO2 nanotubes was 39.7% higher than that of only-F-doped sample. Moreover, sulfur and fluorine codoped into substitutional sites of TiO2 had been proven to be indispensable for strong response and high photocatalytic activity under visible light, as assessed by XPS.  相似文献   

12.
Two kinds of Ru(II)-bipyridine complexes,cis-di(thiocyanate)bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) andcis-di(thiocyanate)bis(2, 2′-bipyridyl-3, 3′-dicarboxylate) ruthenium(II), were utilized as the sensitizers to the nanocrystalline TiO2 film electrodes. Study shows that the two dyes have quite different sensitization properties due to the strong steric effect of carboxyl groups. In addition, the pretreatment to nanocrystalline TiO2 film electrodes with TiCl4 was investigated, which is an effective way to improve the photoelectric conversion performances of sensitized TiO2 electrodes.  相似文献   

13.
Randomly oriented ZnO microsheets were successfully self-assembled on TiO2 nanoparticle (TN) film to act as the scattering layer via a cathodic electrodeposition process. The light scattering properties of ZnO microsheets were studied by UV-Vis spectrometer in the 400–800 nm wavelength range. It was found that ZnO microsheets exhibited excellent ability to scatter the incident light for ZnO microsheet-TiO2 nanoparticle (ZT) composite films. The results showed that dye-sensitized solar cells (DSSCs) fabricated with ZT composite films showed higher short-circuit density (Jsc) and conversion efficiency than TN-based DSSCs, due to the light scattering properties of ZnO microsheets.  相似文献   

14.
TiO2-Graphene Oxide intercalated composite (TiO2-Graphene Oxide) has been successfully prepared at low temperature (80°C) with graphite oxide (GO) and titanium sulfate (Ti(SO4)2) as initial reactants.GO was firstly exfoliated by NaOH and formed single and multi-layered graphite oxide mixture which can be defined as graphene oxide,[TiO]2+ induced by the hydrolysis of Ti(SO4)2 diffused into graphene oxide interlayer by electrostatic attraction.The nucleation and growth of TiO2 crystallites took place at low temperature and TiO2-Graphene Oxide composite was successfully synthesized.Furthermore,the photocatalytic properties of TiO2-Graphene Oxide under the irradiation of UV light were also studied.The results show that the degradation rate of methyl orange is 1.16 mg min-1 g-1(refer to the efficiency of the initial 15 min).Compared with P25 powder,this kind of intercalation composite owns much better efficiency.On the other hand,the reusable properties and stable properties of TiO2-Graphene Oxide intercalated composite are also discussed in this paper.At last,crystalline structure,interface status,thermal properties and microscopic structure of TiO2-Graphene Oxide were characterized by X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),thermogravimetric analysis (TGA),field emission scanning electron microscopy (FESEM) and high-resolution Transmission Electron Microscopy (HRTEM).Also,we have analyzed major influencing factors and mechanism of the composite structures which evidently improve the photocatalytic properties.  相似文献   

15.
V2O5/TiO2 composite films were prepared on pure titanium substrates via micro-arc oxidation (MAO) in electrolytes consisting of NaVO3. Their morphology and elements were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Phase composition and valence states of species in the films were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS) were also employed to evaluate the photophysical property of the films. The V2O5/TiO2 composite films show a sheet-like morphology. Not only V2O5 phase appears in the films when the NaVO3 concentration of the electrolyte is higher than 6.10 g/L and is loaded at the surface of anatase, but also V4+ is incorporated into the crystal lattice of anatase. In comparison with pure TiO2 films the V2O5/TiO2 composite films exhibit significantly narrow band gap energy. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the narrowest band gap energy, which is approximately 1.89 eV. The V2O5/TiO2 composite films also have the significantly enhanced visible light photocatalytic activity. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the best photocatalytic activity and about 93% of rhodamine is degraded after 14 h visible light radiation.  相似文献   

16.
The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaCl with additions of CaO, a cathode of compact V2O3, and a graphite anode under the potential of 3.0 V at 1173 K. The phase constitution and composition as well as the morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). 3 g of V2O3 could be converted to vanadium metal powder within the processing time of 8 h. The kinetic pathway was investigated by analyzing the product phase in samples prepared at different reduction stages. CaO added in the reduction path of V2O3 formed the intermediate product CaV2O4.  相似文献   

17.
By combination of DC reactive magnetron sputtering with multiple arcplating, the alternating C3N4/TiN compound film is deposited onto HSS. The core level binding energy and the contents of carbon and nitrogen are characterized by X-ray photoelectron spectrum. X-ray diffraction (XRD) shows that compound thin film contains hard crystalline phases of α-C3N4 and β-C3N4. The Knoop microhardness in the load range of 50, 5–54, 1 GPa is measured. According to acoustic emission scratch test, the critical load values for the coatings on HSS substrates are in the range of 40–80 N. The metal coated with C3N4/TiN compound films has a great improvement in the resistance against corrosion. Many tests show that such a coating has a very high wearability. Compared with the uncoated and TiN coated tools, the C3N4/TiN coated tools have a much longer cutting life. Foundation item: Supported by the National Natural Science Foundation of China (19875037) Biography: Wu Da-we( (1941-), male, Professor, research direction; thin film and its application.  相似文献   

18.
为了增加光电极光生电子传输通道并提高其光敏剂的负载能力,采用两步水热法制备了一种新颖的TiO_2-ZnO纳米棒分级结构。采用水热法在FTO导电玻璃基底上生长TiO_2纳米棒有序阵列膜,通过浸泡提拉在TiO_2纳米棒上包覆一层ZnO溶胶,经烧结形成ZnO种子层;再次采用水热法于TiO_2纳米棒上生长ZnO纳米棒,形成TiO_2-ZnO纳米棒分级结构,通过旋涂辅助连续离子反应分别在TiO_2纳米棒阵列和TiO_2-ZnO纳米棒分级结构中沉积光敏剂CdS纳米晶,形成CdS/TiO_2纳米棒复合膜和CdS/TiO_2-ZnO纳米分级结构复合膜。利用SEM,TEM,XRD、紫外-可见吸收光谱、瞬态光电流图谱等表征和测试手段,对样品的形貌、结构、光吸收和光电性能进行了表征和测试。结果表明,与单纯的TiO_2纳米棒阵列相比,TiO_2-ZnO分级结构可以沉积更多的CdS光敏剂,CdS/TiO_2-ZnO纳米分级结构复合膜的光吸收性能和瞬态光电流均明显优于CdS/TiO_2纳米复合薄膜。凭借优异的光电性能,TiO_2-ZnO分级结构在太阳电池光阳极材料中具有很好的应用前景。  相似文献   

19.
Photo-induced degradation of a monolayer of Ru(Ⅱ) complex absorbed on anatase TiO2 thin film was studied by using resonant micro-Raman spectroscopy. Under intense light radiation of a laser and in the absence of a reducing agent, the dye decomposed quickly. When the dye-sensitized TiO2 thin film electrode was covered by a reducing agent, namely the I^-/I3^- redox couple, the photo-induced decomposing rate was slowed by a factor of -10^6. In both cases, the dye decomposed with time under an exponential law.  相似文献   

20.
The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (V OC) and fill factor (ff) of the cells were improved significantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and flat band potential (V fb) were investigated. It is found that the interface charge recombination impedance increases and V fb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号