共查询到10条相似文献,搜索用时 0 毫秒
1.
流数据频繁项挖掘是一项重要的研究课题,是其他流数据挖掘任务的基础。Lossy counting 算法是第一个近似的流数据频繁项挖掘的算法,并且具有空间和时间的高效性。详细分析该算法,尤其是它不能回答关于时间的查询的不足后,对其进行改进,提出了一个在多时间粒度上挖掘流数据频繁项的设想,加入时间维度。改进后的算法在时间倾斜窗口保存与合并频繁项,可以应用于各种对时间敏感的流数据查询和挖掘应用中。 相似文献
2.
3.
传统的频繁模式挖掘算法产出大量的频繁模式,这些大量的频繁模式对于后期的分析、处理以及理解都带来了相当大的挑战.针对上述问题,该文提出了一种改进的压缩频繁模式挖掘算法,该算法基于CFP-树通过对传统频繁模式挖掘算法的改进能够从大量的频繁模式中选择出规模更小的频繁模式代表集合,从而起到减小庞大的频繁模式挖掘结果规模的目的.实验中还将该算法和现有的RPlocal算法进行了对比,结果表明改进的压缩频繁模式挖掘算法能够在合理的时间及容错范围内获得更小的频繁模式代表集,同时大大降低了时间复杂度,提高了挖掘效率. 相似文献
4.
FP-growth算法是一个挖掘频繁模式的有效算法,但它在挖掘过程中需要产生大量的条件FP树,因此其时空效率不够理想。提出了DFP-mine算法,通过在改进的FP树上合并子树来挖掘频繁模式,并在挖掘过程中结合了自顶向下和自底向上的双向搜索策略。理论分析和实验表明本文提出的算法具有较好的时空效率。 相似文献
5.
6.
有效地进行频繁项挖掘一直以来都是数据挖掘任务中最为重要的组成部分。已有的大部分频繁项挖掘算法在数据项多及支持度低的情况下,算法的效率急剧下降。为了有效地解决此类问题,提出了一种采用双向十字链表结构的频繁项挖掘算法(two-way crossed list for frequent itemsets mining,TCLFI)。极大地降低了搜索空间,加快了频繁项的筛选过程,减少了所需保存的数据项个数,从而降低了时间复杂度,提高了频繁项的挖掘效率。实验通过真实数据集和合成数据集验证了算法的有效性和扩展性。 相似文献
7.
在经典的频繁闭合项集挖掘算法中,如Closet与Closet+,当条件模式数据库很庞大时,频繁项集的数目将会急剧增长,算法的效率会逐步恶化,并且算法挖掘结果的有效性也随着大量冗余模式的产生而下降.本文首先针对传统的FP-tree的算法,给出了一种改进的FP—tree算法,然后在新算法的基础上,提出新的频繁闭合项集挖掘算法,该算法只需把FP-Tree中所有由叶子结点到根结点的路径遍历一遍,就可以得到各项的所有子条件模式基,避免了传统FP-tree算法在同一条路径上向前回溯比较的繁琐.实验表明优化后的算法避免了资源的耗费,减少了频繁闭合项集挖掘的运算开销,大大提高了数据挖掘的效率. 相似文献
8.
NB-MAFIA: 基于N-List的最长频繁项集挖掘算法 总被引:1,自引:0,他引:1
本文在深度优先搜索的框架上, 引入基于项集前缀树节点链表的项集表示方法N-List, 提出一个高效的最长频繁项集挖掘算法NB-MAFIA。N-List的高压缩率和高效的求交集方法可以实现项集支持度的快速计算, 同时采用对搜索空间的剪枝策略和超集检测策略来提高算法效率。在多个真实和仿真数据集上, 通过实验评估了NB-MAFIA和两个经典算法。实验结果表明NB-MAFIA在多数情况下优于其他算法, 尤其在真实和稠密数据集上优势更为明显。 相似文献
9.
大规模且快速增长的数据集处理给频繁项集挖掘(FIM)带来新的挑战.尽管现有一些方法具有出色的可伸缩性,但不能充分利用了原始数据集的计算结果,且给分布式数据集处理带来了过多的通信开销.针对该问题问题,基于Spark平台提出一种高效的并行增量FIM算法(FCFPIM).FCFPIM结合完全压缩频繁模式树(FCFP-Tree... 相似文献