首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
文章以高纤维素废纸屑为原料,利用无机离子液体进行选择性表面溶解处理,得到具有润胀特性的胶状前驱体,在不同温度条件下热解制备生物质多孔碳。800℃下生物质多孔碳比表面积为1 276.3 m2/g,电化学测试结果表明,其具有较高的比电容(271 F/g),经过1 000次循环,电容保持率为90.3%。为了进一步提升超级电容器的电化学性能,在1 mol/L H2SO4电解液中加入15 g (NH4)2Fe(SO4)2·6H2O,超级电容器的比电容得到显著提升,电流密度为10 A/g时,比电容为439 F/g,为原电容器(221 F/g)的2倍。研究结果可为生物质多孔碳超级电容器制备提供参考。  相似文献   

2.
锂硫电池理论比容量高、成本低、环境友好,但硫正极仍面临导电性差、容量衰减快、体积膨胀等问题。采用生物质废弃物玉米芯作为碳源,KOH为活化剂,通过不同工艺制备了三种多孔碳材料。利用XRD、SEM、BET等对多孔碳产品的物相形貌等进行表征后发现,采用一次活化工艺所制备的多孔碳材料具有大量相互贯通的孔道结构,故具有高的比表面积(1 578.64 m~2/g)与较大的孔容(0.93 cm~3/g)。覆硫后用于锂硫电池正极,可作为三维导电骨架显著提高硫正极的导电率,并对单质硫表现出较高的吸附性能。电化学测试表明改性正极材料首次放电比容量为1 050.7 mAh/g,50周循环后容量保持率为50.4%。综合对比表明,一次活化工艺为利用此类生物质废弃物制备多孔碳材料提供了优化方案。  相似文献   

3.
以杨木蒸汽爆破后的固体残渣(SEP)为原料,采用两步协同活化法制备多孔炭材料,并对制备的多孔炭材料的电化学性能进行分析。结果表明:所制备的多孔炭(PC800-4)的比表面积最高(3 282 m~2/g),首次放电比电容也最高,为319 F/g。以此多孔炭材料为前驱体,硝酸铁为铁源对多孔炭材料进行金属离子的负载。采用比表面积及孔径分析仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、拉曼光谱技术(Raman)、X射线光电子能谱仪(XPS)对负载有金属氧化物的多孔炭材料进行结构表征并对其电化学性能进行分析。结果表明:α-Fe_2O_3成功负载在所制备的多孔炭材料上,其比电容由原来的319 F/g增加到419 F/g.  相似文献   

4.
以玉米秸秆为碳源、ZnCl_2为刻蚀剂,通过调控玉米秸秆与ZnCl_2的相对用量得到一系列多孔碳材料(YAC-x).利用XRD、Raman、XPS、TEM、N2adsorption-desorption等手段对其进行表征,并利用三电极超级电容器体系测试其电化学性能.结果表明,与未经刻蚀的玉米秸杆碳(YC)相比,所制多孔碳材料具有更丰富的孔结构及更为优异的超级电容性能,其中YAC-4最为突出,当电流密度为1A/g时,比电容为236.8F/g,这是源于其大的孔容(Vp=1.11cm~3/g)和高比表面积(SBET=2060m~2/g).  相似文献   

5.
利用溶剂挥发结合高温热聚合法制备了氮掺杂多孔碳(NPC)材料,并通过SEM、TEM、TG、N_2吸附-脱附、XPS等表征手段对样品的微观形貌结构和元素组成进行了分析.结果表明,氮元素掺杂明显增加材料的比表面积和孔体积,当制备的氮掺杂多孔碳材料的含氮量为4.2%(原子分数)时,它的比表面积高达422.0m~2/g高于没有氮掺杂样品的301.1m~2/g.此外,采用循环伏安、恒电流充放电和交流阻抗对NPC材料的电化学性能进行了深入研究.测试结果表明氮元素掺杂能够明显增加材料的比电容量,降低材料的内阻,极大提高碳材料的电化学性能.在0.5A/g的电流密度下,通过氮元素掺杂使得材料的比电容从83.8F/g提高至162.8F/g,内阻值从1.39Ω降低至0.47Ω;并且所得的氮掺杂多孔碳样品具有良好的倍率性能和循环稳定性.  相似文献   

6.
利用水热法合成了纳米棒状的MnO_2/碳纳米球(CNPs)作为电化学超级电容器的电极材料.利用场发射扫描电镜(FESEM)、X射线衍射光谱分析(XRD)对样品的微观形貌、物相进行分析;利用循环伏安法和恒电流充放电测试材料的电化学性能.结果表明:纳米棒状MnO_2/CNPs复合材料具有良好的电化学性能.在0.1 A/g的电流密度,1 mol/L Na_2SO_4电解液中,电极材料的比电容高达305.6 F/g,远高于纯碳球的比电容(49.3 F/g),当电流密度增至5 A/g时,材料的比电容为235 F/g,比电容仍能保持76.9%.  相似文献   

7.
通过改变间苯二酚、甲醛和碳酸钠的配比,实现对碳气凝胶材料孔结构的控制.通过改变CO_2活化的温度,研究活化温度对碳气凝胶孔结构和电化学性能的影响.利用氮气吸脱附实验(BET)和扫描电子显微镜(SEM)对材料的孔结构和表面形貌进行表征分析,运用循环伏安法(CV)、恒流充放电等技术对材料的电化学性能进行测定.结果表明:提高CO_2活化温度有利于改善材料的结构和性能,当CO_2活化的最高温度为1 000℃时,碳气凝胶具有最高比表面积(2 201m~2/g);在6mol/L的KOH溶液中,当电流密度为1A/g时,相应的比电容可达190F/g.  相似文献   

8.
果蔬企业在生产过程中会产生大量的果皮,这些废弃物目前还没有得到有效利用。本文以废弃猕猴桃果皮为原料,以氢氧化钾为活化剂,制备了杂原子掺杂多孔碳。通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)、拉曼光谱(Raman)和氮气吸附-脱附(BET)等手段对制备的材料进行了表征,结果表明:采用果皮预碳化、活化的方法可以得到N、O、S杂原子原位共掺杂多孔碳;经过氢氧化钾活化后,碳材料的比表面积大幅增加,比表面积最高可达1698. 6 m~2/g。在三电极体系下对制备的碳材料超级电容器性能的评价结果表明:在氢氧化钾与猕猴桃果皮质量比1∶3时,电极材料具有最佳的超电性能;在扫描速率为5 m V/s时,材料的比电容为221. 1 F/g,同时具有良好的倍率性能和循环稳定性,经过4000次的长循环后,容量保持率为83. 2%。  相似文献   

9.
以稻草秸秆为原料,在N_2气氛下,采用预碳化-碱活化的方法制备了活性炭材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、N_2吸附-脱附等手段进行表征.结果表明,当活化温度为700℃时,制备的活性炭比表面积为2 743 m~2/g.将其用于超级电容器的电极材料显示了较好的性能,当电流密度为5 A/g时,比电容可达到380 F/g,循环充放电1 000次后,比电容值约为首次比电容的85%,具有较好的循环稳定性.  相似文献   

10.
以累托石为原料,通过镁热还原制备多孔单质硅,然后以葡萄糖为碳源进行热处理覆碳制备Si/C负极材料。采用XRD、BET、SEM、TG分析了镁热还原条件对材料结构的影响,利用电化学工作站和电池充放电测试系统考察了Si/C负极材料的电化学性能。研究表明,累托石镁热还原的多孔硅的孔容、平均孔径、硅含量对Si/C复合材料的电化学性能有重要影响。随着镁热还原过程中金属镁质量的增加,制备的Si/C负极材料的电化学性能先增加后降低,当累托石与金属镁质量比为1∶0. 4时,制备的复合材料电化学性能最佳,在电流密度为0. 1 A/g时,材料首圈比容量最高可达1 120 mAh/g,循环200圈比容量仍能保持555 mAh/g。  相似文献   

11.
以花瓣球形的聚苯胺(PANI)为前驱体,经炭化和KOH活化制备出球形结构的多孔炭.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、低温N2吸脱附、X射线衍射(XRD)以及X射线光电子能谱(XPS)等分析手段对多孔炭的形貌、结构和元素组成进行表征,并探讨了炭化温度对多孔炭电化学性能的影响.结果表明:炭化和活化温度分别为750℃和850℃时,获得的多孔炭为直径约2μm的球形粒子,其比表面积高达2 496.6m2/g,并具有合适的多级孔结构分布.当电流密度为0.5A/g时,合成的多孔炭比电容值高达247F/g;当电流密度增大到20A/g时,比电容量仍有182F/g,表现出优良的倍率性能;在电流密度为10A/g的条件下,经1 000次恒电流充放电循环后,其比电容量保持率为102%.  相似文献   

12.
以聚吡咯(PPy)纳米球为前驱体,经1 000℃高温炭化后,采用KOH在750℃进行活化制备多孔碳纳米球(PCS),并利用对巯基苯胺(PATP)与PCS进行溶剂热反应对PCS进行功能化处理,制备了高密度的功能化多孔碳纳米球(PATP-PCS).结果表明,经过PATP功能化之后,低密度的多孔炭材料转变为高密度的功能化炭材料.PATP-PCS的体积电容在0.5 A/g时可达183.63F/cm~3;当电流密度增大到20 A/g时,体积电容仍有123.14F/cm~3,显示出优异的倍率性能;在电流密度为10A/g的条件下,经过3 000次恒流充放电循环后,其循环寿命高达94.7%,表明了突出的循环稳定性.  相似文献   

13.
为了探究原料配比对脲醛树脂形貌及碳微球电化学性能的影响,通过改变尿素、甲醛与甲酸的物质的量比,制备了三种不同微纳结构的脲醛树脂微球,再在氮气保护下800℃裂解,获得了相应的碳微球。采用上述脲醛树脂前驱体制备的花状碳纳米微球(NUFC-3)作为电极材料,在三电极体系中开展电化学性能研究。结果表明,在1 A/g的电流密度下,比电容(Cs)为189 F/g;在20 A/g的电流密度下,Cs为145 F/g,其保留率为76.7%。该脲醛树脂为前驱体的碳微球具有制备方法简单、成本低廉及电化学性能优异等优点,有望在电化学储能领域获得应用。  相似文献   

14.
以咖啡渣为原料, 利用碳化与活化反应制备出多孔的碳材料, 并利用X射线衍射、 扫描电子显微镜、 Raman光谱和N2吸附脱附等方法分析该材料的物理化学性质. 结果表明: 该材料具有较高的石墨化程度; 当质量电流密度为0.1 A/g时, 其首圈放电和充电质量比容量值分别为1 029 mA·h/g和461 mA·h/, 且循环稳定性较好, 其质量比容量远高于石墨的理论容量(372 mA·h/g).  相似文献   

15.
采用水热法和电化学沉积法在泡沫镍上制备了CoO@ Ni-Co-S电极材料,并对其进行了SEM、XRD、XPS表征和电化学性能测试.结果表明:本材料具有较高的电化学性能,在电流密度为1 A/g时,比电容为1 352 F/g;电流密度为10 A/g时,比电容仍能达到1 055 F/g;进一步通过稳定性测试研究发现,在电流密度为2 A/g下充放电2 000次,电容保留率为87%.以CoO@ Ni-Co-S复合材料作为正极,活性炭作为负极构筑非对称型超级电容器,该装置在电流密度为1 A/g时,比电容为209 F/g,操作电压窗口为1. 7 V,功率密度为2. 99 k W/kg时,能量密度可达39. 7 Wh/kg.  相似文献   

16.
将废旧轮胎热裂解得到炭黑,采用氢氧化钾(KOH)为活化剂,通过高温活化、浓硝酸(HNO_3)酸化处理成多孔活性炭,制备超级电容器电极材料。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和氮气吸脱附对材料的微观形貌、晶体结构以及比表面积、孔径分布进行分析,并通过电化学工作站CHI660E对热裂解炭黑电极材料的电化学性能进行测试。结果表明:利用KOH活化以及浓HNO3酸化所制备的电极材料具有较好的电化学性能,其在0.5 A/g的电流密度下的放电比容量达到160 F/g,在20 A/g的电流密度仍然有127 F/g的放电比容量,容量保持率为79%,表现出较好的倍率性能。  相似文献   

17.
为了制备性能优良的电化学储能电极材料,利用分子自组装技术,将甲基丙烯酸甲酯和丙烯腈聚合后的产物进行碳化和活化,得到具有大孔、介孔和微孔的氮杂层次孔碳纳米材料.分别采用扫描电镜、透射电镜、氮气吸附脱附、X线光电子能谱、恒流充放电、循环伏安及交流阻抗等测试方法和手段对材料的形貌、结构及电容性能进行表征.实验结果表明:所得氮杂孔碳纳米材料比表面积为698 m~2/g,孔容为0.42 cm~3/g.在电流密度为0.2 A/g时,该材料比电容量为241.9 F/g,且具有较好的循环稳定性,在2 A/g下循环5 000圈后,比电容值仍能保持在初始容量的93.6%.将其组装为对称超级电容器,能量密度和功率密度分别达到19.6 W·h/kg和200 W/kg,高于目前一些商业化的电容器数值,说明该氮杂层次孔碳纳米材料在超级电容器方面展示出很好的应用前景.  相似文献   

18.
以废旧纺织品聚丙烯腈为碳源,在氯化锌-氯化钾熔盐体系一步碳化活化制备超级电容器碳材料.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、比表面分析仪等物理测试方法对材料进行结构、形貌和孔隙表征.并利用电化学工作站在三电极体系下对制备的碳材料进行循环伏安(CV)、恒流充放电(GCD)和交流阻抗(EIS)测试.结果表明,通过在空气中200℃稳定化10 h、氯化锌-氯化钾熔盐体系中800℃下炭化2 h制备的活性炭具有较大的比表面积和发达的孔结构,作为超级电容器电极材料展现出优异的电化学性能.在0. 25 A/g电流密度下最大比电容达319 F/g;在电流密度高达10 A/g下,比电容仍保留62. 7%.经过5 000次充放电循环性能测试,容量保持率可达82. 6%.  相似文献   

19.
以氧化石墨烯(GO)为原料、硫酸铵((NH_4)_2SO_4)为动态气体模板剂,采用浸渍结合焙烧工艺制备了氮掺杂多孔薄层石墨烯(p-Gr).利用扫描电镜(SEM)、透射电镜(TEM)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)、拉曼光谱(Raman)、氮气吸附-脱附(N_2adsorption-desorption)等手段对所得材料进行了表征,并考察了不同硫酸铵用量对所制材料电容性能的影响.结果表明,与未活化的石墨烯(Gr)相比(S_(BET)=70.5m~2/g),所制p-Gr-40具有更大的比表面积(S_(BET)=267.3m~2/g)、更为丰富的孔结构以及优异的电化学性能.在三电极超级电容器中,在电流密度为1A/g时,p-Gr-40比电容可达139.2F/g,远远高于Gr(56.5F/g);在对称两电极超级电容器中,在功率密度为160.03W/kg时,p-Gr-40的能量密度为12.98Wh/kg,其比电容在充放电循环10 000圈后仍保持基本不变.这些优异的电化学性能源于其多孔结构及杂原子(如氮)掺杂.  相似文献   

20.
为了获得性能优异的超级电容器电极材料,选择廉价的玉米面作为碳前驱体,利用简单的硬模板方法,以容易水洗去除的碳酸钠为大孔模板、氢氧化钾为活化试剂,制备了兼具大孔、介孔和微孔的三维分级孔碳材料.分别采用扫描电镜、氮气吸附脱附、恒流充放电、循环伏安及交流阻抗等测试方法,对材料的形貌、孔结构和电化学储能性能进行表征.结果表明:所得孔碳材料具有良好的分级孔结构特点,其比表面积高达1 365.2 m2/g.电流密度为0.5 A/g时,比电容高达245 F/g;电流密度为20 A/g时,电容量保持率为93.5%.在5 A/g的电流密度下,循环10 000圈后,电容量仍能保持在97.3%.组装所得对称超级电容器的能量密度和功率密度分别达到29.2 W·h/kg和500.6 W/kg,说明该孔碳材料在超级电容器方面具有很好的应用前景,合成方法成本低、绿色环保,预计能够在大规模制备三维孔碳基纳米材料方面得到广泛应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号