首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
采用传统熔融冷却法获得了以P2O5为成核剂的Li2O-Al2O3-SiO2系统基础玻璃,通过差热分析确定了使该玻璃微晶化的热处理条件,并获得了不同热处理温度下Li2O-Al2O3-SiO2系统低膨胀微晶玻璃;利用X射线衍射分析和扫描电子显微镜对晶化试样的物相和微观结构进行了研究;讨论了热处理制度对玻璃的析晶及热膨胀系数的影响.研究结果表明以P2O5为成核剂,采用不同热处理制度能获得Li2O-Al2O3-SiO2系统低膨胀微晶玻璃;在析晶初始温度下进行热处理,析出β-石英晶体,但晶体生长缓慢,结晶程度低;提高晶化温度,析出β-锂霞石和β-锂辉石晶体且晶体生长迅速.  相似文献   

2.
在1 300℃下熔制了Yb3+离子掺杂高折射率PbO-Y2 O3-Al2 O3-SiO2系统玻璃,并在1 050℃进行了微晶化热处理.利用XRD,光学显微镜和荧光光谱仪分别分析了微晶玻璃的相变、微观结构和光谱特性.研究表明:玻璃经1 050℃热处理后析出了单一相的YAG晶体,晶粒尺寸在40 μm左右且分布均匀;2 mm厚样品光透过率为80%;Yb3+离子在热处理后择优进入了YAG晶格,Yb:YAG微晶玻璃的荧光光谱显示了Yb3+离子2 F5/2→2F7/2的能级跃迁.  相似文献   

3.
以CaO-Al2O3-SiO2为主要原料,采用烧结法制备出微晶玻璃.利用DSC确定了核化温度和晶化温度.利用XRD和SEM研究微晶玻璃的物相组成和显微结构.通过研究热处理温度对微晶玻璃性能的影响,可得出在780℃核化1h、948℃晶化2h时,微晶玻璃的性能最好.  相似文献   

4.
采用传统熔体冷却方法,研究以TiO2为成核剂、以Li2O Al2O3 SiO2为基础组成的玻璃的制备工艺;根据差热分析(DTA)的结果确定玻璃的核化与晶化温度,然后针对基础玻璃组成,采用二步热处理方法获得透明的微晶玻璃;用X射线衍射分析(XRD)和扫描电子显微镜(SEM)对晶化试样的物相和显微结构进行研究;用热膨胀仪测定玻璃在热处理前、后的热膨胀系数;用绝缘电阻测试仪测试该微晶玻璃的电阻率.研究结果表明:微晶玻璃的主晶相为Al2O3·TiO2微晶体,次晶相为ZnSiO3;微晶玻璃与硅片有相近的热膨胀系数,约为32.5×10-7/℃;微晶玻璃晶化后的电阻率较低,为6.8×1010Ω·cm.  相似文献   

5.
热处理对LAS系微晶玻璃热胀性能的影响   总被引:1,自引:0,他引:1  
通过正交试验设计,制备了Li2O-Al2O3-SiO2系微晶玻璃,讨论了热处理参数对微晶玻璃热胀性能的影响。采用DSC、XRD、SEM等研究手段,制定了微晶玻璃的热处理制度并研究了微晶玻璃的析晶过程和微观结构。结果表明:各热处理参数对微晶玻璃热膨胀性能影响大小的顺序为晶化温度晶化时间核化时间核化温度;热处理过程中SiO2固溶进入β-锂辉石结构形成锂铝硅酸盐。  相似文献   

6.
煤矸石微晶玻璃热处理工艺的研究   总被引:1,自引:0,他引:1  
利用烧结法制备煤矸石微晶玻璃,采用正交试验方法研究了热处理工艺制度.由试验得到的最佳工艺制度为核化温度710℃,核化时间2h;晶化温度为836℃,晶化时间为2h.并结合DTA、X射线衍射和扫描电镜的研究结果进行综合分析,为获得具有实用价值的CaO-Al2O3-SiO2系统煤矸石微晶玻璃提供了参考和依据.  相似文献   

7.
利用油页岩渣制备微晶玻璃   总被引:1,自引:0,他引:1  
以油页岩渣为主要原料制备了微晶玻璃,探讨了微晶玻璃组成、主晶相确定和晶核剂选择等问题.采用DTA,XRD和SEM等测试手段,分析了晶核剂和热处理制度对微晶玻璃的影响.结果表明:复合晶核剂(TiO2+P2O5)能有效促进油页岩渣玻璃晶化;最佳热处理制度为:850℃核化100 min,980℃晶化80 min.微晶玻璃的主晶相为钙铁透辉石,次晶相为钙长石;晶体呈纤维状结构并且交错分布;性能明显优于同类的瓷质砖、大理石和花岗岩等建筑装饰材料.  相似文献   

8.
镍渣制备微晶玻璃的结晶动力学及结晶化过程   总被引:2,自引:0,他引:2  
探讨以镍渣为主要原料采用熔融法制备建筑用微晶玻璃. 研究引入Cr2O3作为晶核剂的镍渣微晶玻璃的成核及晶化过程. 利用DSC测试来确定基础玻璃的晶化温度,并利用修正的Johnson-Mehl-Avrami(JMA)方法初步计算以镍渣为主要原料所制备的基础玻璃在加入质量分数2%的Cr2O3作为晶核剂后的结晶活化能E及结晶动力学参数k(Tp),计算结果分别为E=371.1 kJ·mol-1,结晶动力学参数k(Tp)=0.29. 采用XRD、SEM和光学显微镜测试、分析及观察方法来鉴定、分析微晶玻璃试样的主晶相及微观结构. 结果显示,加入晶核剂的基础玻璃从930 ℃开始均匀地析出透辉石相晶体;随着温度的升高,晶体尺寸也逐渐增大,在温度达到950 ℃后,对样品进行30 min保温热处理,样品中晶体尺寸达到10~15 μm.  相似文献   

9.
PbO系玻璃的改进及Bi2O3系封接玻璃的研制   总被引:2,自引:0,他引:2  
以氧化铅或氧化铋、氧化钙、硼酸、硫酸锌、二氧化硅和氧化镁为原料,通过高温熔融和微晶化,成功地制备出具有低熔点高膨胀系数的PbO系统微晶封接玻璃和Bi2O3系统微晶封接玻璃.分别用X射线衍射分析(XRD)、光学显微镜、热膨胀系数分析(DIL)和差热曲线分析(DTA)等方法对样品或原料混合物进行表征,分别讨论了PbO系统和Bi2O3系统微晶封接玻璃在制备工艺过程中对样品性能产生影响的主要因素.结果表明:Bi2O3系统和PbO系统都能形成玻璃;都可微晶化;PbO系微晶封接玻璃的熔化温度为365℃,最佳微晶化温度和时间分别为350~400℃和2 h,膨胀系数为12.68×10-6/℃;Bi2O3系微晶封接玻璃的熔化温度为460℃,最佳微晶化温度和时间分别为440~500℃和2 h,膨胀系数为12.06×10-6/℃.  相似文献   

10.
为了提高微晶玻璃原料中高钙冶金渣的掺量,需要制备出碱度更高的微晶玻璃. 本文采用一步法,以钢渣为主要原料,制备碱度( CaO与SiO2的质量比)为0. 9的钢渣基高碱度微晶玻璃. 通过X射线衍射分析、扫描电镜和性能测试等手段,研究热处理条件对微晶玻璃微观形貌及线收缩率、体积密度和抗折强度等性能的影响规律. 研究表明,高碱度微晶玻璃适合采用一步法制备工艺,当在1100℃保温120 min时,微晶玻璃烧结过程基本完成,此时获得最大体积密度2. 4 g·cm-3 ,最高抗折强度56. 4 MPa. 微晶玻璃的主晶相为钙铝黄长石,副晶相为辉石. 基础玻璃颗粒在升温过程中完成了成核和析晶过程,而在保温过程中主要进行的是基础玻璃颗粒的烧结致密化和晶体的进一步发育. 升温至1100℃保温30 min,微晶玻璃的抗折强度超过45 MPa,微晶玻璃内部晶体呈方柱状交织排列并构成晶体骨架分布在残余的玻璃基体中;随着保温时间的增加,微晶玻璃的线性烧结收缩率、体积密度和抗折强度均逐渐增大,而晶相的含量基本保持不变,晶体逐渐由球形颗粒状和短柱状发育为长柱状. 晶体的形状以及与残余玻璃相构成的整体致密结构是导致高碱度微晶玻璃力学性能提高的主要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号