首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
基于SQL的Apriori改进算法研究   总被引:1,自引:0,他引:1  
为了减少传统的Apriori算法在数据库应用中生成错误规则和大量无关项集,造成对空间的浪费而且运算的周期也较长的问题,本文提出了一种基于SQL的Apriori改进算法,通过引入提升度的概念,从根本上大大剪枝关联规则和无关项集.经过算例实际测试表明,在实测运算中缩短了Apriori算法的运算时间,提高了查询精度,减少了大量的无关项集,从而证实了论文所提出的Apriori改进算法是正确与有效的.  相似文献   

2.
基于SQL的Apriori改进算法   总被引:1,自引:0,他引:1  
Apfiofi算法是一种最有影响的挖掘关联规则的算法,由于其算法仅用支持度、可信度来衡量关联规则,容易生成一些错误规则,所以,引入了提升度这一概念,提出一种基于SQL的Apfiofi改进算法。  相似文献   

3.
如何确定概念间语义关系的存在性和如何确定概念间的关系类型是本体关系学习的两个基本问题.现有的本体关系学习算法常常区分出不同类型的语义关系,使用不同的策略来获取概念间的各类关系,影响了算法的效率.提出一种基于数据挖掘的本体关系学习算法,运用关联规则挖掘获取概念间的关系,利用聚类分析对概念关系类型进行区分.实验结果证明,算法较好地解决了本体关系学习中的两个基本问题.  相似文献   

4.
购物篮分析是零售企业商业智能领域的经典问题。本文以徐州百大超市有限公司的销售业务数据为样本,阐述了基于SQL Server2005关联规则的购物篮分析过程。  相似文献   

5.
因初始项集中的数据特征相关,使关联规则Apriori算法的数据挖掘结果存在误差.为了解决这个问题,结合粗糙集理论(RST),提出一种改进的关联规则数据挖掘算法;然后,将该算法应用到软件工程风险因素和风险缓解因素管理分析中,提出一种新的软件工程适应性结构.仿真结果表明,该改进算法提高了挖掘数据的效率.  相似文献   

6.
Apriori算法是关联规则挖掘中的经典算法,一直是数据挖掘领域的研究热点。传统的Apriori算法由于产生过多的无用的候选项集以及需要多次扫描数据库导致在一定程度上限制了算法的效率。本文针对这一问题,提出一种新的RF-Apriori算法。该算法首先对数据进行二元处理;然后利用项集的反单调性减少候选项集的产生,从而提高算法效率。实验结果表明,RF -Apriori算法效率明显优于Apriori算法。  相似文献   

7.
提出了一个基于最小完美哈希函数的关联规则的数据挖掘算法.基于Apriori 的算法,在综合了传统哈希剪枝技术的同时,利用最小完美哈希函数的优点,保证了静态数据库关联规则挖掘,可以对关联规则的哈希结构数据进行动态的调整.该算法提高了挖掘效率,通过抑制哈希地址冲突提高了算法的稳定性和可用性.  相似文献   

8.
关联规则是数据挖掘中的重要研究内容之一,本文针对关联规则的维护问题,在事务数据库不变前提条件下对最小支持度和最小可信度进行改变,设计实现了一个增量式更新的改进算法AIUA。  相似文献   

9.
[目的]基于关联规则与聚类分析对菟丝子方剂进行研究,对临床用药和开发新方剂有一定的借鉴意义。[方法]检索并筛选《中国药典》2020版和《新编国家方剂》第2版中含菟丝子的方剂,用SPSS Modeler 18.0、SPSS Statistics 27.0等对含菟丝子的方剂进行分析,包括主治疾病、用药频率、主成分等,并选择高频使用药对和疾病类型,对药物组合进行深入分析。[结果]分析得出:使用频次排名前5的药物依次为:菟丝子、枸杞子、熟地黄、当归、山药;对含菟丝子成分的中药方剂进行相关性分析,共获得19个常用药对。[结论]含菟丝子的方剂以补虚药为主,其与淫羊藿、肉苁蓉配伍主治男性前阴病类,与枸杞子、熟地黄配伍主治肾病类,并对其他病症及剂型进行了研究,使其主治范围更广。  相似文献   

10.
数据挖掘算法对于支持度改变及数据集更新的适应性一直都是一个难点.本文根据数据集逐步增加的增量式方法,映射事务模式于线性空间中进行挖掘,并借助了图像在操作系统中显示及存储的特点,提出了一种新的增量式数据挖掘算法IPM-DM.同时,对比分析了其中两种模式映射方法,并与同类算法比较,经过实验证明,算法IPM-DM是有效且可行的.  相似文献   

11.
基于分层抽样的高速网络吞吐率测量   总被引:1,自引:0,他引:1  
在测量精度要求较高时,随机抽样流量测量的样本容量仍然很大,仍会造成一定程度的资源负担和测量开销上的问题.针对前面这种简单抽样策略的局限性,提出了一种基于报文分层抽样的高速网络吞吐率测量技术,并对分层抽样参数的选取及其理论进行了探讨;从网络吞吐率测量的角度对分层抽样与简单随机抽样的测量性能进行比较.结果表明,在相同样本容量的情况下,分层抽样测量精度几乎平均是简单随机抽样精度的9倍,且算法复杂度仅为O(n),有效解决了高速网络测量环境中测量效益不高的问题.这种基于分层抽样的测量技术还可以用于其他网络流量参数的测量.  相似文献   

12.
文章通过多层采样方式,将样本空间划分为多个部分,集中采样点到使概率密度函数值大的地方,大大减小了采样误差;在重采样阶段嵌入KHM聚类算法,通过将空间特征与权重分布近似的粒子进行聚类,降低总的样本数,提高了计算效率。样本经聚类处理后,在保持粒子状态后验分布的几何特征的同时,状态空间中的粒子数明显降低,计算效率显著提高。  相似文献   

13.
针对大型结构短样本模态参数识别,提出基于分层抽样的最优复Morlet小波短样本模态参数识别方法.先对结构响应信号进行分层抽样,用随机减量法提取每一层的自由衰减信号;再根据样本标准差确定每一层的层权,用最优复Morlet小波识别每一层的模态参数;最后用层权对模态参数进行加权得到最终的模态参数.工程应用结果表明,所提方法具有较高的识别精度,良好的低频密集模态解耦和高频虚假模态抑制能力.  相似文献   

14.
为改进数据分类的效果,基于粗糙集理论实现数据分类和规则推理的基本原理,利用粗糙集理论中核及决策类覆盖的思想,提出了一个在数据集中发现没有冗余属性的最小归纳依赖关系,简化带有不相容规则的决策系统的数据挖掘算法。通过PL/SQL演示了挖掘分类规则的过程,结果表明基于粗糙集分类算法的有效性。  相似文献   

15.
随着网络的普及和信息量的急剧增加,从海量数据中提取有用的数据信息已迫在眉睫。在对已有的基于密度偏差抽样算法改进的基础上,提出了一种基于密度偏差抽样的聚类算法。实验表明,随着信息量.数据维数的增加,该算法聚类的正确率以及对数据的处理速度都要较传统的聚类算法有所提高。  相似文献   

16.
在现有的关联规则改进算法的基础上,深入分析了经典算法的内涵,提出了不产生候选二项集的改进算法,而且减少了扫描数据库的大小.与Apriori算法相比,在较大型的交易数据库中,效率明显提高.  相似文献   

17.
提出一种随机数据取样的方法,通过在大量的原始数据中随机选取一部分进行分析,在不影响分离效果的前提下,使得FASTICA所需要的时间大为减少.利用峭度估计器分析在一定的置信区间和置信水平的条件下得到取样比例的下限.计算机仿真结果证明这种取样技术的有效性,并且分析不同取样比例下的FASTICA算法性能.  相似文献   

18.
在关联规则的挖掘过程中引入遗传算法,并且结合一个实例,给出了详细的利用遗传算法挖掘关联规则的实现方法。遗传算法的引入很好的避免了规则集中的"假规则"问题。同时,在算法的具体实现过程中,采用了截断赌轮、动态变异概率等方法,有效避免了遗传算法中早熟现象的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号