首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
用纳米硅薄膜制成了共振隧穿量子点二极管,在77K温度下对其I-V特性进行了测量,得到了具有共振隧穿特征的实验结果。对实验结果分析表明,纳米尺寸晶粒构成的量子点具有库仓阻塞效应.  相似文献   

2.
利用叠加态量子纠错思想,设计了由H门和CNOT门实现的5位量子编码纠错线路,实现了在量子Hamming界条件下用最少位的叠加态编码.  相似文献   

3.
采用有效质量近似方法,计算了0K温度时准一维方形谐振势系统中电子磁化强度与化学势之间的函数关系,结果发现有比三维电子气体更为复杂的量子振荡结构,这是由于电子受电势和磁势共同束缚的结果.然而,在高温弱磁场时,这种量子受限效应就不明显,磁化强度过渡到经典情况的朗道逆磁性.  相似文献   

4.
H2株甲肝减毒活疫苗K7的核苷酸全序列分析   总被引:8,自引:2,他引:6  
应用RT-PCR获取H2株甲肝减毒活疫苗(K7)的cDNA片段,经末端终止测序PCR试剂盒和全自动测序仪(ABI377)作序列测定,用Maxtrigene软件进行计算机分析,K7疫苗病毒的核苷酸全长含7443个碱基.K7对比其亲代H2株,减毒的HM175株以及HM175野毒株,同源性分别为99.75%,99.95%和99.61%;彼此间在P1和P2连接区168个碱基的同源性为99.4%~100%,均为ⅠB基因亚型.前三者在5’非编码区均有131~134位和203位5个碱基缺失,且结构蛋白基因区序列完全一致.本文用分子病毒学方法证实了K7疫苗的优异纯毒水平,也为开展甲型肝炎分子流行病学工作提供了基础资料  相似文献   

5.
本文介绍了量子霍尔效应(QHE)作为电阻自然基准的前景.并研制了一种量子霍尔电阻(QHR)的测量系统,在4.2K的温度下对QHR进行了精密测量,测试了多个GaAs-AlGaAs异质结的QHR,其量值为25812.846Ω,测量不确定度约为1×10-6。  相似文献   

6.
利用子动力学方法讨论了Liouville空间中弱耦合近似条件下量子位的消相干问题,给出了N个量子位的非Markovian过程演化动力学方程和不同时间阶数近似条件下量子位消相干速率。提出了弱耦合条件下非Markovian过程中量子位无消相干一般判据以及投影子空间中量子计算的纠错方法。  相似文献   

7.
磁光Kerr效应的量子散射方法   总被引:3,自引:1,他引:2  
从量子电动力学的观点出发,通过计算光电子散射的微分散射截面,定量地给出了磁光Kerr转角和出射光椭圆率的微观量子表达式。  相似文献   

8.
利用金属有机气相沉积技术生长InGaAsP/InP多量子阱结构,通过改变生长程序,得到了优化的陡峭量子阱界面.并利用光致发光(PL)和X射线双晶衍射对其界面质量分析,X射线双晶衍射表明界面起伏为一个原子层厚度,在10K温度下PL谱半峰高宽(FWHM)为7meV  相似文献   

9.
通过研究有限位的海森堡XX模型的基态,讨论了对纠缠和局域极化的一些性质.结果表明:基态是由具有最小总自旋0(偶量子位)或1/2(奇量子位)的微观态所组成,局域极化和微观态在基态中所占的比率密切相关,比率越小的局域极化越强,比率相同的则局域极化也相同:基态的对纠缠是所有本征态中最大的.当量子位比较小的时候,态的简并将会减小对纠缠,量子位的奇偶性对对纠缠有很大的影响;随着量子位的增加,位数对对纠缠的影响越来越小,奇数位链的对纠缠极限约是0.3412,偶数位链的对纠缠极限约是0.3491.  相似文献   

10.
量子网络是通过量子节点来产生、处理和存储量子信息,利用飞行比特作为量子信道来传递量子信息的全量子信息处理与传输网络系统.量子网络不仅是实现长距离、网络式量子通信的基础,还可以实现可扩展的分布式量子计算机,并可应用于凝聚态多体系统的量子演化模拟.因此,量子网络是以量子通信、量子计算和量子模拟为中心的量子调控研究的核心课题.目前,选择合适的物理载体作为量子节点以及合适的相互作用形式以实现光子与光子、光子与量子节点以及不同量子节点间的相互作用是量子网络研究的重要课题.冷原子系综以及腔量子电动力学系统是实现量子节点的典型代表.文章将结合本实验室的研究来综述量子网络在以上2个物理系统中近期的部分研究进展,并在文末对量子网络的发展做一定展望.  相似文献   

11.
All physical implementations of quantum bits (or qubits, the logical elements in a putative quantum computer) must overcome conflicting requirements: the qubits should be manipulable through external signals, while remaining isolated from their environment. Proposals based on quantum optics emphasize optimal isolation, while those following the solid-state route exploit the variability and scalability of nanoscale fabrication techniques. Recently, various designs using superconducting structures have been successfully tested for quantum coherent operation, however, the ultimate goal of reaching coherent evolution over thousands of elementary operations remains a formidable task. Protecting qubits from decoherence by exploiting topological stability is a qualitatively new proposal that holds promise for long decoherence times, but its physical implementation has remained unclear. Here we show how strongly correlated systems developing an isolated twofold degenerate quantum dimer liquid ground state can be used in the construction of topologically stable qubits; we discuss their implementation using Josephson junction arrays. Although the complexity of their architecture challenges the technology base available today, such topological qubits greatly benefit from their built-in fault-tolerance.  相似文献   

12.
Cole BE  Williams JB  King BT  Sherwin MS  Stanley CR 《Nature》2001,410(6824):60-63
Quantum bits (qubits) are the fundamental building blocks of quantum information processors, such as quantum computers. A qubit comprises a pair of well characterized quantum states that can in principle be manipulated quickly compared to the time it takes them to decohere by coupling to their environment. Much remains to be understood about the manipulation and decoherence of semiconductor qubits. Here we show that hydrogen-atom-like motional states of electrons bound to donor impurities in currently available semiconductors can serve as model qubits. We use intense pulses of terahertz radiation to induce coherent, damped Rabi oscillations in the population of two low-lying states of donor impurities in GaAs. Our observations demonstrate that a quantum-confined extrinsic electron in a semiconductor can be coherently manipulated like an atomic electron, even while sharing space with approximately 10(5) atoms in its semiconductor host. We anticipate that this model system will be useful for measuring intrinsic decoherence processes, and for testing both simple and complex manipulations of semiconductor qubits.  相似文献   

13.
Cirac JI  Zoller P 《Nature》2000,404(6778):579-581
Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).  相似文献   

14.
Experimental entanglement purification of arbitrary unknown states   总被引:6,自引:0,他引:6  
Pan JW  Gasparoni S  Ursin R  Weihs G  Zeilinger A 《Nature》2003,423(6938):417-422
Distribution of entangled states between distant locations is essential for quantum communication over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification--a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states--is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed.  相似文献   

15.
Architecture for a large-scale ion-trap quantum computer   总被引:4,自引:0,他引:4  
Kielpinski D  Monroe C  Wineland DJ 《Nature》2002,417(6890):709-711
Among the numerous types of architecture being explored for quantum computers are systems utilizing ion traps, in which quantum bits (qubits) are formed from the electronic states of trapped ions and coupled through the Coulomb interaction. Although the elementary requirements for quantum computation have been demonstrated in this system, there exist theoretical and technical obstacles to scaling up the approach to large numbers of qubits. Therefore, recent efforts have been concentrated on using quantum communication to link a number of small ion-trap quantum systems. Developing the array-based approach, we show how to achieve massively parallel gate operation in a large-scale quantum computer, based on techniques already demonstrated for manipulating small quantum registers. The use of decoherence-free subspaces significantly reduces decoherence during ion transport, and removes the requirement of clock synchronization between the interaction regions.  相似文献   

16.
Quantum coherence is an important enabling feature underpinning quantum computation. However, because of couplings with its noisy surrounding environment, qubits suffer from the decoherence effects. The dynamical decoupling (DD) technique uses pulse-induced qubit flips to effectively mitigate couplings between qubits and environment. Optimal DD eliminates dephasing up to a given order with the minimum number of pulses. In this paper, we first introduce our recent work on prolonging electron spin coherence in γ-irradiated malonic acid crystals and analyze different decoherence mechanisms in this solid system. Then we focus on electron spin relaxation properties in another system, phosphorous-doped silicon (Si:P) crystals. These properties have been investigated by pulse electron paramagnetic resonance (EPR). We also investigate the performance of the dynamical decoupling technique on this system. Using 8-pulse periodic DD, the coherence time can be extended to 296 μs compared with 112 μs with one-pulse control.  相似文献   

17.
量子退相干理象是由系统与环境的纠缠所引起的系统相干性的消失,是一种纯粹量子力学效应[1].  相似文献   

18.
Decoherence-protected quantum gates for a hybrid solid-state spin register   总被引:1,自引:0,他引:1  
Protecting the dynamics of coupled quantum systems from decoherence by the environment is a key challenge for solid-state quantum information processing. An idle quantum bit (qubit) can be efficiently insulated from the outside world by dynamical decoupling, as has recently been demonstrated for individual solid-state qubits. However, protecting qubit coherence during a multi-qubit gate is a non-trivial problem: in general, the decoupling disrupts the interqubit dynamics and hence conflicts with gate operation. This problem is particularly salient for hybrid systems, in which different types of qubit evolve and decohere at very different rates. Here we present the integration of dynamical decoupling into quantum gates for a standard hybrid system, the electron-nuclear spin register. Our design harnesses the internal resonance in the coupled-spin system to resolve the conflict between gate operation and decoupling. We experimentally demonstrate these gates using a two-qubit register in diamond operating at room temperature. Quantum tomography reveals that the qubits involved in the gate operation are protected as accurately as idle qubits. We also perform Grover's quantum search algorithm, and achieve fidelities of more than 90% even though the algorithm run-time exceeds the electron spin dephasing time by two orders of magnitude. Our results directly allow decoherence-protected interface gates between different types of solid-state qubit. Ultimately, quantum gates with integrated decoupling may reach the accuracy threshold for fault-tolerant quantum information processing with solid-state devices.  相似文献   

19.
Nadj-Perge S  Frolov SM  Bakkers EP  Kouwenhoven LP 《Nature》2010,468(7327):1084-1087
Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.  相似文献   

20.
伊辛模型是最简单的海森堡模型,对该模型中纠缠的研究将极大地推动固态量子计算机的发展.在考虑系统相位消相干的基础上,研究了带有Dzyaloshinski-Moriya(DM)相互作用的两量子比特伊辛链中的纠缠动力学问题后发现:相位消相干和DM相互作用对纠缠的影响依赖于系统初态的形式.对某些初态来说,系统纠缠始终不变;对另外一些初态来说,系统纠缠随时间振荡并逐渐减小,增加DM相互作用将减小纠缠和振荡周期,增加相位消相干率也将减小纠缠,但振荡周期不变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号