首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
随着车辆行驶速度的不断提高,气流噪声在车辆总体噪声中所占的比例越来越高。因此,如何降低低车辆的气流噪声成为国内外学者开始关注的问题。由于车外脉动压力是产生气流噪声的源,而车外绕流流场中的涡则是脉动压力产生的原因,所以,弄清车外流场中涡的分布规律对于这一问题的研究至关重要。涡动力方程是描述外流场中涡量分布的控制方程,该方程是一个强非线性方程。笔者采用谱分解方法,拟订了一种求解二维涡动力方程数值解的具  相似文献   

2.
汽车外部流场和脉动压力模拟计算   总被引:1,自引:0,他引:1  
为了解车辆在高速行驶时产生的气流噪声的规律,分析了产生气流噪声的机理,采用大涡模拟方法计算了某轿车模型的瞬态外流场和表面脉动压力,得到了表面脉动压力频谱特性、速度特性和分布特点.计算结果表明,汽车A 立柱后气流明显折转,在侧窗处产生气流分离区,分离区的漩涡不断生成和脱落,在侧窗玻璃上产生了压力波动,即形成了声学噪声源--脉动压力.车辆表面脉动压力在低频区较大,并随频率的增加而减小,在高频区较小,约与风速的4次方成正比,即风速每增加1倍,脉动压力级增加12 dB左右,计算结果与试验结果基本一致.  相似文献   

3.
用边界元法计算高速车辆内部气流噪声   总被引:3,自引:0,他引:3  
车内噪声严重影响了车辆乘坐的舒适性,同时由于气流噪声随车速的六次方增长,故随着高速公路的不断新建以及车速的不断提高,研究和降低气流噪声巳成为控制高速车辆车内噪声的关键之一,笔者在风洞实验的基础上,首先分析了气流噪声向车内传播的基本途径;然后利用边界元理论(BEM),建立了车内声场的边界积分方程,并利用三角线性元对该边界积分方程进行了离散,最后通过MATLAB编程求解,对由车外脉动压力诱发产生的车内气流噪声的大小进行了理论计算,与风洞实验结果相比,吻合较好。  相似文献   

4.
基于统计能量法的汽车风噪传播特性分析   总被引:1,自引:0,他引:1  
以某款实车为研究对象,结合风洞试验、计算流体力学(CFD)和统计能量分析方法(SEA),获取该车在140km·h-1下的外部脉动压力和声场输入,建立较为准确的SEA模型,探索车外空气脉动及其产生的气动噪声向车内的传播特性.研究表明,车内气动噪声主要来自于车窗、前后风挡;车外脉动压力远大于声场,但声场主导中频偏高频车内噪声,脉动压力在中频偏低频作用明显;风挡向车内的声能传播,主要以车外空气脉动激发的振动传递为主.  相似文献   

5.
应用雷诺时均法Realizable k–ε的湍流模型对Ahmed模型在不同后背倾角下进行了定常流场的分析,并进行流场的大涡模拟(LES)计算.基于流场的压力脉动和速度脉动分布,获取并分析了模型表面压力脉动级分布及远场气动噪声特性,并对远场噪声与模型气动阻力的关系进行了探讨.结果表明,不同后背倾角模型中气流分离特征差异较大,导致模型尾部压力脉动强度差异明显,从而影响辐射至远场的噪声能量及其分布,且噪声能量与模型的气动阻力具有一定的关系.合理设计后背倾角,对于尾部气动噪声的控制非常重要.  相似文献   

6.
贯流风机气动噪声数值预估   总被引:2,自引:0,他引:2  
通过精细求解二维非定常Reynolds平均的Navier-Stokes方程,数值模拟了贯流风机内部的复杂流场。随后从流场的数值结果中提取出叶片、涡墙和后墙的脉动压力作为声源,进行声场计算。以声学中的Ffowcs Williams-Hawk-ings(FW-H)方程作为出发方程,数值求解贯流风机的噪声场。计算结果表明在贯流风机中,后墙的压力脉动与涡墙的压力脉动是主要的噪声源。该文的数值预估不仅在贯流风机的总体气动性能上与实验测试结果吻合,同时气动噪声场的预估结果也与实验测试结果吻合良好。  相似文献   

7.
为了抑制旋转式压缩机储液器的气流噪声,给出了不求解结构和声学方程,通过CFD方法求解储液器内流场和压力脉动.并通过理论分析来改善储液器.利用该方法将一台压缩机储液器的平口竖管变换成劈尖形状.数值计算表明,改进后储液器气流压力脉动和涡量强度均降低了,储液器结构特性和声学特性参数不受微小结构变化的影响.压缩机声学试验显示.改进后噪声降低了2~3 dB.  相似文献   

8.
在前期采用多孔蜗舌控制贯流风机气动噪声的基础上,采用动态压力测量与大涡模拟相结合的方法,对比研究了多孔蜗舌方案的贯流风机内部非稳态流场特性。实验结果显示,蜗舌的"多孔板与容腔组合结构"可削弱蜗舌气流的压力脉动幅值,因而降低了贯流风机的噪声。大涡模拟结果则揭示了贯流风机内大尺度旋涡运动的特征,其压力脉动特性与实验吻合良好。本文对Powell涡声方程进行了修正,提出一个包含多孔介质和自由空间的涡声方程通用形式,试图以此解释多孔蜗舌对于流体发声的影响与作用机理。  相似文献   

9.
高速列车头型近场与远场噪声预测   总被引:4,自引:0,他引:4  
建立了某头型的1∶8缩比三车编组气动噪声仿真模型,采用大涡模拟获得车身湍流脉动压力,基于FW-H方程和声扰动方程分别获得远场噪声和近场噪声,从而建立一整套头型气动噪声预测方法.远场测点总声压级的仿真结果与风洞试验结果相差小于2.0dB(A),频谱变化趋势相同,量级相差较小,表明基于FW-H方程得到远场噪声的可行性.基于声扰动方程能够获得头型关键部位的总声压级,通过对比量级发现,转向架部位总声压级量级远大于其他部位,这与传声器阵列识别结果相吻合,从而验证了声扰动方程获得近场噪声结果.对比头型各部位湍流脉动总压力级和总声压级发现,转向架和排障器量级大于车窗、鼻锥和车体;与湍流脉动总压力级相比,总声压级分布更为均匀,量级更小.  相似文献   

10.
通过对常规的N-S方程进行变形处理,化为涡量方程的形式,导出了适合于工程应用的求解由于汽车运行而产生的脉动压力场的理论计算公式.最后利用数值解法计算了汽车后视镜产生的脉动压力场,并与风洞试验结果进行了比较,取得了良好的效果.  相似文献   

11.
韩斐  周毅 《科学技术与工程》2022,22(34):15103-15114
受电弓作为高速列车主要噪声源之一,是一个包含许多部件的复杂结构。为研究受电弓气动噪声的主要噪声源以及远场气动噪声特性,基于计算流体力学开源软件OpenFOAM,采用大涡模拟结合K-FWH方程的联合方法,探究受电弓在250 km/h、300 km/h和350 km/h等不同速度下运行时的流场及气动噪声特性。通过模拟受电弓在不同速度以及不同开口状态下的运动,得到受电弓的频谱特性以及噪声源分布规律。结果表明,高速列车受电弓引发的远场气动噪声主要是低频和中频噪声,并且噪声频谱具有明显的主频。而远场噪声指向性方面,受电弓产生气动噪声具有偶极子特性,噪声主要向尾流斜上方传播。受电弓不同开口方向,所诱发的噪声声压级并不相同,闭口状态诱发的声压级更大。研究结果能为日后降低高速列车受电弓气动噪声的研究以及工程降噪问题提供理论参考。  相似文献   

12.
CRH3型高速列车气动噪声数值模拟研究   总被引:4,自引:0,他引:4  
采用非线性声学求解方法(NLAS)进行近场气动噪声研究, 通过一个二维后台阶算例进行了方法验证, 与实验数据符合良好。在噪声源周围建立噪声面, 并利用FW-H方程进行远场噪声评估。对CRH3型高速列车在300 km/h速度下运行进行了气动噪声分析, 着重考虑车体几何对气动噪声的影响。首先对高速列车在RANS计算下的统计结果进行分析, 研究高速列车关键部位如头部、车厢连接处、尾部等的流场特征。进而通过在列车表面特征位置设置测点, 研究车体不同部位对气动噪声产生的贡献。通过在远场设置噪声测点, 分析了CRH3型高速列车的远场气动噪声特性, 并对噪声水平进行了评估。  相似文献   

13.
针对叶片尾缘穿孔对气动及噪声特性的影响,基于NACA65019叶片,在雷诺数Re=2×105条件下,采用大涡模拟和FW-H方法研究孔型和倾斜角对叶片气动特性、绕流流场和噪声特性的影响规律,并选择降噪效果较好的穿孔模型应用到小型轴流风机上,对穿孔风机进行试验。结果表明:当穿孔倾斜角为30°时,在一定攻角范围内(α≤10°),圆柱型穿孔叶片气动性能最接近原始叶片,并且该穿孔叶片总声压级降低可达9 dB。这是由于穿孔叶片有效抑制了涡量沿叶片表面法向的发展,加速了尾缘涡沿流动方向的能量衰减,且穿孔形成的射流使大尺度的涡破碎形成小尺度的涡,衰减波动力,降低了气动噪声。  相似文献   

14.
轨道再入飞行器气动热力学环境研究   总被引:1,自引:0,他引:1  
 高超声速飞行器气动热力学环境研究是直接涉及轨道飞行器飞行控制、热防护设计和热安全的关键问题之一。本文借助于多组分、考虑非平衡态气体的振动以及激波与热化学非平衡态效应的守恒积分型Navier-Stokes方程组,使用高分辨率总变差减小格式,计算研究了轨道再入飞行器再入地球大气层的10个飞行工况(飞行马赫数9.7~27.8),分析了不同工况下轨道再入飞行器弓形脱体激波后流场气动热力学环境特性,得出气动力系数和沿壁面的热流密度分布,与国外相关飞行数据比较,两者吻合较好。  相似文献   

15.
苍鹰翼尾缘结构的单元仿生叶片降噪机理研究   总被引:1,自引:0,他引:1  
利用逆向工程方法提取苍鹰尾缘非光滑形态的降噪特征元素,由此建立了仿生叶片结构模型;采用基于Smagorinsky亚格子应力模型的大涡模拟,结合基于Lighthill声类比的FW-H方程,分别对仿生尾缘锯齿叶片和标准叶片的流道模型进行了三维流场及声场的数值计算;通过分析仿生齿形结构对叶尾迹流场的影响,研究了仿生尾缘齿形结构的气流噪声控制机理.结果表明:仿生尾缘锯齿结构叶片的总A计权声压级比标准叶片降低了9.8dB;叶片尾缘锯齿结构可以改变流场噪声峰值的分布规律,从而降低了噪声峰值,且大部分频率范围内的气动噪声均有所降低;仿生尾缘锯齿结构可以改变各截面尾迹涡的脱落位置,从而增大了涡心之间的距离,抑制了脱落涡对尾迹流动的扰动,进而减小了叶片表面的非定常压力脉动和尾迹涡引起的气动噪声.  相似文献   

16.
基于旋涡强度方法的冲击射流涡结构研究   总被引:1,自引:0,他引:1  
该文采用旋涡强度方法对冲击射流涡结构进行了深入研究。首先将粒子成像测速技术(P IV)测量得到的原始流场图片进行相应处理得到原始速度场,再利用b ior5.5双正交小波分析得到消除高频噪声的流场结构;然后对此进行涡量和旋涡强度计算,得到相应的涡量场和旋涡强度场。与涡量方法相比,因旋涡强度方法排除了剪切作用的影响,故可以更有效地分析流场中的涡结构。进而得到了冲击射流中的旋涡强度随压比、冲击距离、喷嘴唇厚等参数的变化规律。  相似文献   

17.
空腔流动在运输、航天等行业中广泛存在。当高速流体通过空腔时,在腔内产生自激振荡,流场和声场相互耦合产生的气动噪声会引起结构的振动和疲劳破坏,甚至影响结构的使用寿命,因此如何控制和降低腔体气动噪声已成为国内外学者研究的焦点问题。本文在阅读大量文献的基础上,概述了当前腔体气动噪声的研究现状,分析和归纳腔体气动噪声的预测理论、实验研究,数值模拟方法以及噪声控制技术,展望腔体气动噪声研究的未来发展趋势。  相似文献   

18.
在船舶与海洋工程领域存在广泛的空腔流动,其流动过程较为复杂,湍流结构明显。以三种不同高宽比的空腔模型为研究对象,进行了网格无关性分析,选择合适的网格开展数值计算,探究不同高宽比对空腔流动的影响。采用大涡模拟的方法,获得了不同高宽比空腔流动的流场信息,对其速度分布、压力分布、涡量分布进行分析,发现高宽比小的空腔流动较为复杂,腔内涡流非线性明显,而高宽比较大的空腔流动其速度及涡量分布集中在空腔开口域。本研究为后续船舶工程领域中空腔流动的应用奠定了理论基础。  相似文献   

19.
高速列车转向架舱对转向架区域流场与气动噪声影响   总被引:1,自引:0,他引:1  
根据涡声理论和声比拟方法,数值模拟了高速列车转向架简化模型的流场与气动噪声特性,分析了转向架舱对转向架流动与气动噪声性能的影响.结果表明:在单独转向架与转向架位于转向架舱内2种工况下,几何体近壁流场内形成的体偶极子声源为近场四极子噪声的主要声源,转向架表面压力脉动产生的面偶极子声源为声辐射主要声源;与单独转向架相比,转向架舱改变了转向架流动特性与声辐射指向性,削弱了转向架所产生气动噪声的强度,但转向架舱后壁会产生较大气动噪声.  相似文献   

20.
汽车在高速行驶(速度超过100 km/h)时,气动噪声对车内噪声环境影响起主导作用.因此,对车外噪声源的控制显得尤为重要.采用试验的方法,研究了后视镜的镜臂不同长度参数对车内噪声环境影响的变化规律,推导出后视镜镜臂参数与车内声能量、语言清晰度呈对数变化规律,且响度呈现出非线性变化规律,得到了后视镜镜臂长度参数控制在40...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号