共查询到20条相似文献,搜索用时 15 毫秒
1.
孙治廷 《河北师范大学学报(自然科学版)》1989,(2):127-128,126
微分中值定理是微分学基本定理。一般说来:应用导数研究函数的性质,都要直接或间接的借助于中值定理,它是应用导数的局部性研究函数在区间上整体性的重要工具。然而在证明拉格朗日中值定理和柯西中值定理的过程中,都引入辅助函数,对此,在教学中学生不易掌握,多年来一直是教学上的难点。 相似文献
2.
余丽 《重庆三峡学院学报》2014,(3):21-24
微分中值定理是微分学的基础内容,也是用来研究函数性态的重要手段.因此,对微分中值定理的研究和再证明长期以来都是经久不衰的话题.通过对微分中值定理的再证明,不仅有利于初学者对定理的理解和掌握,也有利于其对定理的灵活运用,同时通过对微分中值定理的推广,还可以得到更加一般的情形. 相似文献
3.
微分中值定理是高等数学中比较重要的一块内容,也是比较难的一章。尤其是遇到一些存在性证明时.往往不能直接运用微分中值定理来证明,需要构造一些辅助函数,通过对微分中值定理证明题常见结论的剖析,提出了辅助函数作法的几种模式,探讨作辅助函数的规律和方法。 相似文献
4.
本文是在费尔马定理的基础上,得出了一个推论,由这个推论再引入辅助函数,然后比较容易地证明了四个微分中值定理, 相似文献
5.
Rolle中值定理是研究函数在区间上整体性质的一个有力工具,本文主要介绍在应用Rolle中值定理时构造辅助函数的两种方法。 相似文献
6.
7.
李冬梅 《辽宁师范大学学报(自然科学版)》2004,27(2):248-250
微分学中有3个名的中值定理,其中在Lagrange中值定理的证明过程中,引入了辅助函数,然后由Rolle中值定理来证明Lagrange中值定理.这个突如其来的辅助函数很难让学生理解和接受.中从一个全新的角度,利用参数变异法引入辅助函数,攻克了教学难点. 相似文献
8.
中值定理证明中辅助函数的构造 总被引:1,自引:0,他引:1
在中值定理的证明中构造辅助函数是关键,怎样构造出辅助函数是中值定理证明中的难点.本文通过对定理条件和结论的分析,给出了构造辅助函数的规律和方法. 相似文献
9.
10.
11.
12.
13.
16.
17.
本文对"微分中值定理"的教学作了相关的探讨,研究了构造辅助函数的方法及其简单的应用,运用数形结合的方法给出微分中值定理的多种证明方法。目的在于对学生反复启迪、反复引导、反复渗透,使学生对微分中值定理的认识有一个螺旋的上升。为后续研究函数的性态和洛必达法则的证明打下基础。 相似文献
18.
本文通过典型例子讨论了应用微分中值定理解证明题时构造辅助函数的一种常用的方法:指数因子法。 相似文献
19.
通过实例介绍了在利用微分中值定理证明含有“中值点”的导娄值的等式时,如何利用构造法引进辅助函数的方法。 相似文献
20.
基于拉格朗日中值定理与柯西中值定理的基本原理,构建了罗尔定理不同系数的辅助函数,用这些辅助函数重新证明了拉格朗日中值定理和柯西中值定理,并且推广了微分中值定理. 相似文献