共查询到20条相似文献,搜索用时 15 毫秒
1.
设Pm,Pn,ps(m,n,s≥3)分别为3条路,参照直积图的定义,定义了直积Pm(○)Pn(○)Ps,给出其全染色及邻强边染色的计算方法,得到其全色数xt(Pm(○)Pn(○)Ps)=9和邻强边色数x'as(Pm(○Pn(○)Ps)={9 m,n,s≥4,8其它,并进一步给出一个猜想:xt((○)n i=1Pi)=2n+1=x'as((○)n i=1 Pi) 相似文献
2.
图染色的基本问题是确定各种染色法的色数.图G和H的直积图G(×)H是一类很重要的图积,给出了直积图Cm(×)Pn的全染色的方法,得到其全色数Xn(CM(×)Pn)={4n=2 5n≥3,并进一步推广到图的正常全染色,得到其全色数Xn(G(×)Pn)-{△(G)+2n=2 2△(G)+1n≥3. 相似文献
3.
4.
图染色的基本问题是确定各种染色法的色数.图G和H的直积图G×H是一类很重要的图积,给出了直积图Cm×Pn的全染色的方法,得到其全色数x″(Cm×Pn)={4n=2 5n≥3,并进一步推广到图G×Pn的正常全染色,得到其全色数x″(G×Pn)={△(G)+2=2, 2△(G)+1n≥3. 相似文献
5.
6.
在一个简单图的基础上,连接任两个最短路长为k的两个顶点,得到原图的k幂.根据幂图的结构性质,利用穷染,递推,换色的方法,对树的k幂和圈的2幂的进行邻点可区别全染色,并得到了邻点可区别全色数.特别的,在存在两个相邻最大度点时,按k的3剩余类进行分类,在k≠3a,a为偶数的情况下,树的k幂的邻点可区别全色数为6. 相似文献
7.
图染色的基本问题是确定各种染色法的色数.图G和H的直积图GH是一类很重要的图积,给出了直积图CmPn的全染色的方法,得到其全色数χ′′(CmPn)={4n2 5n=≥3,并进一步推广到图GPn的正常全染色,得到其全色数χ′′(GPn)={△(G)+2n=2 2△(G)+1n≥3. 相似文献
8.
Cm×Cn的邻点可区别全色数 总被引:2,自引:2,他引:0
给出了图Cm×Cn的一种全染色方法,并证明了该染色是邻点可区别的,从而得到了Cm×Cn的邻点可区别的全色数:xat(Cm×Cn)=6.此结果尚未见其他文献报道. 相似文献
9.
设G是一个简单图,若图G的一个k-正常边染色f满足对任意的uv∈E(G),都有C(u)≠C(v),则称f为G的一个邻强边染色,简称k-ASEC,并称x_(as)′(G)=min{k|G存在k-ASEC},为G的邻强边色数.其中C(u)={f(uv)|uv∈E(G)}.该文研究了一类正则极大平面图的邻强边染色,给出了着色方案,求解出其邻强边色数. 相似文献
10.
11.
C3m×C3n、C4m×C4n的邻点强可区别全染色及全色数 总被引:2,自引:2,他引:0
给出了图C3m×C3n、C4m×C4n的一种全染色方法,并证明了该染色是邻点强可区别的,从而得到了C3m×C3n、C4m×C4n的邻点强可区别的全色数:Хast(C3m×C3n)=6、Хast(C4m×C4n)=6.此结果尚未见其他文件报道. 相似文献
12.
给出了图C3m×C3n、C4m×C4n的一种全染色方法,并证明了该染色是邻点强可区别的,从而得到了C3m×C3n、C4m×C4n的邻点强可区别的全色数:Хast(C3m×C3n)=6、Хast(C4m×C4n)=6.此结果尚未见其他文件报道. 相似文献
13.
两个图G1和G2的笛卡尔积图G1×G2是这样一个图:V(G1×G2)=V(G1)×V(G2),E(G1×G2)={(u1,u2)(v1,v2)|u1=v1且u2v2∈E(G2),或者u2=v2且u1v1∈E(G1)}.确定了笛卡尔积图K3,3×Pn的交叉数为7n-1. 相似文献
14.
设G是简单连通图,G的庀.正常全染色f称为是邻点可区别的,如果对G的任意相邻的两顶点,其点的颜色及关联边的颜色构成的集合不同,称f为G的k-邻点可区别全染色.这样的后中最小者称为G的邻点可区别全色数.本文考虑了图的中间图的邻点可区别全色数,并确定了路、圈、星图和扇图的中间图的邻点可区别全色数. 相似文献
15.
讨论笛卡儿积图P_2×P~n当n≡0(mod 4)时邻点可区别Ⅰ-均匀全染色问题,根据该类图的结构性质,通过构造法给出它们的邻点可区别Ⅰ-均匀全染色方法,从而有效地确定了其邻点可区别Ⅰ-均匀全色数为4. 相似文献
16.
对G的正常边染色,若满足不同顶点所关联的边所对应的颜色集不同,则称此染色法为点可区别的边染色法,其所称用最少染色数为该图的点可区别边色数,得到了路与扇的联图的点可区别边色数. 相似文献
17.
花图的邻点可区别关联色数 总被引:1,自引:0,他引:1
轮Wr+1(r≥3)是一个r阶圈加上一个新的顶点,再把圈上每个顶点与新顶点连上边所得到的图,新顶点与圈上顶点之间的边称为辐边,圈上的边称为边缘边。所谓花图Fr,m,n(r≥3,m≥1,n≥2m+1)是在轮Wr+1中,在每条辐边上分别嵌入m-1个新点,在每条边缘边上分别嵌入n-2m-1个新点所得到的图。研究花图Fr,m,n(r≥3,m≥1,n≥2m+1)的邻点可区别关联着色,确定了部分花图的邻点可区别关联色数,并给出了剩余花图的邻点可区别关联色数的上界。 相似文献
18.
19.
20.
研究了图K_3~n和D_(n,4)的邻和可区别全染色.根据图K_3~n和D_(n,4)的结构特点,利用穷染的方法得到了图K_3~n和D_(n,4)的邻和可区别全色数. 相似文献