首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exploration of new genes controlling rice leaf shape is an important foundation for rice functional genomics and plant archi-tecture improvement. In the present study, we identified a rolling leaf mutant from indica variety Yuefeng B, named rl11(t), which exhibited reduced plant height, rolling and narrow leaves. Leaves in rl11(t) mutant showed abnormal number and morphology of veins compared with those in wild type plants. In addition, rl11(t) mutant was less sensitive to the inhibitory effect of auxin than the wild type. Genetic analysis suggested that the mutant was controlled by a single recessive gene. Gene Rl11(t) was initially mapped between SSR markers RM6089 and RM124 on chromosome 4. Thirty-two new STS markers around the Rl11(t) region were developed for fine mapping. A physical map encompassing the Rl11(t) locus was constructed and the target gene was finally delimited to a 31.6 kb window between STS4-25 and STS4-26 on BAC AL606645. This provides useful information for cloning of Rl11(t) gene.  相似文献   

2.
Fine mapping of a semidwarf gene sd-g in indica rice(Oryza sativa L.)   总被引:4,自引:0,他引:4  
The semidwarf gene sd-g which has been usedin indiea rice breeding in southern China is a new one, non-allelic to sd-1. To map sd-g, an F2 population derived fromthe cross between Xinguiaishuangai and 02428 was con-structed. The sd-g was roughly mapped between two mi-crosatellite markers RM440 and RM163, with genetic dis-tances of 0.5 and 2.5 cM, respectively. Then nine new poly-morphic microsatellite markers were developed in this region.The sd-g was further mapped between two microsatellitemarkers SSR5-1 and SSR5-51, with genetic distances of 0.1and 0.3 cM, respectively, while cosegregated with SSR418. ABAC contig was found to span the sd-g locus, the region be-ing delimited to 85 kb. This result was very useful for cloningof the sd-g gene.  相似文献   

3.
For the past several years, a novel dwarf disease has been observed on rice (Oryza sativa) in some regions of Guangdong Province and Hainan Province, southern China. Infected plants showed stunting, dark leaf and small enations on stem and leaf back. Typical Fijivirus viroplasma containing crystalline arrayed spherical virons approximately 70--75 nm in diameter and tubular structures were detected in ultrathin sections by an electron microscope in parenchyma phloem cells of the infected plants. The virus was transmitted to rice seedlings by white-backed planthoppers, Sogatella furcifera (Hemiptera: Delphacidae), collected in the diseased fields. Analysis of dsRNA extracts from infected plants revealed ten linear segments, which were similar to the electrophoretic profile of Rice black-streaked dwarf virus (RBSDV). RT-PCR with a single primer which matched to a linker sequence ligated to both 3' ends of the viral genomic dsRNAs resulted in amplification of genome segments 9 (S9) and 10 (S10) cDNA products. The complete nucleotide sequences of S9 and S10 were obtained from clones of the RT-PCR amplicon exhibited characteristic properties of Fijivirus including low GC content (34.5% and 35.6%), genus conserved 5' and 3' termini sequences and similar genome organization. Blast searches indicated that the sequences of S9 and S10 shared 68.8%--74.9% and 67.1% --77.4% nucleotide identities with those of viruses in the Fijivirus group 2, respectively. These values were similar to those among other viruses in the Fijivirus group 2 and considerably lower than those among RBSDV isolates. Phylogenetic trees based on S9 and S10 nucleotide sequences and their putative amino acid sequences showed that this virus represented a separate branch among other Fijiviruses. The virus was also detected by a nested RT-PCR assay in corn (Zea mays), barnyard grass (Echinochloa crusgalll), Juncellus serotinus and flaccidgrass (Pennisetum flaccidum) in and/or adjacent to the infected rice fields. I  相似文献   

4.
Chromosome segment substitution lines (CSSL) consist of a battery of near-isogenic lines that have been developed and cover the entire genome of some crops. With the exception of one homozygous chromosome segment transferred from a donor parent, the remaining genome of each CSSL line is the same as the recipient parent. It is an ideal material for genome research and particularly QTL mapping. In the present study, we first developed one set of CSSL lines using G hirsutum acc. TM-1 (the genetic standard), as the recipient parent and G barbadense cv. Hai7124 as the donor parent using molecular assistedlselection in BC5S1-3 generations. The CSSL consisted of 330 different lines, in which 1-4 different lines had the same or overlapping substituted segments. The genetic length of the substituted segments covered 5271.9 cM with an average segment distance of 10.9 cM, 1.5 times the total genetic length of Upland cotton (3514.6 cM). The substituted segments of each line varied in length, ranging from 3.5 cM for the shortest segment to 23.2 cM in the longest segment. Our CSSL have not yet to cover the entire tetraploid cotton genome, due to the absence of some donor parent interval segments.  相似文献   

5.
Tiller angle of rice is an important agronomic trait that contributes to breed new varieties with ideal architecture. In this study, we report mapping and characterization of a rice mutant defective in tiller angle. At the seedling stage, the newly developed tillers of the mutant plants grow with a large angle that leads to a “lazy“ phenotype at the mature stage. Genetic analysis indicates that this tillerspreading phenotype is controlled by one recessive gene that is allelic to a reported mutant la. Therefore, the mutant was named la-2 and la renamed la-1. To map and clone LA, we constructed a large mapping population. Genetic linkage analysis showed that the LA gene is located between 2 SSR markers RM202 and RM229. By using the 6 newly-developed molecular markers, the LA gene was placed within a 0.4 cM interval on chromosome 11, allowing us to clone LA and study the mechanism that controls rice tiller angle at the molecular level.  相似文献   

6.
The scant hair mutant mouse (locus symbol: snthr 1Bao ) is a recessive mutation that originated in an ethylnitrosourea chemical carcinogenesis study using the DBA/2J inbred strain. The gene responsible for the mutation was previously determined to be phospholipase C, delta 1 (Plcd1; mutant allele symbol Plcd1 snthr1Bao ). To map the modifiers of Plcd1, an intercross (DBA/2J-snthr 1Bao /snthr 1Bao × C57BL/6J+/+) was conducted. The F2 mutant progeny exhibited a variety of alopecia phenotypes; all F2 mutants (n=507) were classified into 3 groups (mild, moderate, and severe alopecia) and genotyped based on 96 microsatellites. A major QTL was identified on mouse chromosome (mChr) 15 at 12 cM with an LOD score greater than 7 (P < 0.0001). Three minor QTLs were detected on mChr 2, 5, and 7 at 40, 84 and 48 cM, respectively. The QTLs on mChr 7 and 15 were associated with minor alopecia while the QTLs on mChr 2 and 5 were associated with moderate to severe alopecia. No antagonistic or synergistic effects among or between the 4 QTLs were found. Integrating the functions of the 4 potential regulatory QTLs and mutant Plcd1 snthr1Bao , we found that these QTLs might contribute to variations of scant hair severity by altering the Ca2+ signal pathways in mouse skin.  相似文献   

7.
In this study, Cry ⅠA(b) gene was successfully transferred into the biocontrol fungus Trichoderma harzianum with an efficiency of 60-180 transformants per 10^6 spores by using Agrobacterium tumefaciens-mediated transformation. Putative transformants were analyzed to test the presence of Cry ⅠA(b) gene by Southern blot. Most transformants contained a single T-DNA copy. RT-PCR analysis showed that the Cry ⅠA(b) gene was transcribed. Antifungal activities and insecticidal activities of the transformants were examined. There was no obvious difference in antifungal activities between the transformants and their wild strains. The modified mortalities of the transformants T1 and T2 were 69.57% and 91.30%, respectively. The tranformation system mediated by A. tumefaciens proved to be a powerful tool for the filamentous fungi transformation and functional genomic study with its high transformation frequency, simplicity of T-DNA integration, and genetic stability of transformants.  相似文献   

8.
There are two main methods to determine boron isotopic composition. One is the solution method, in which boron is purified after the samples are dissolved in solution and the boron isotope ratios are determined by thermal ionization mass spectrometry (P-TIMS and N-TIMS) or multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). The other is an in-situ analysis method, in which the in-situ boron isotopic ratios in minerals are analyzed directly using secondary ion mass spectrometry (SIMS) or laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). In the in-situ analysis method for boron isotopes, the multifarious chemical purification and separation processes of the solution method are avoided, with increased work efficiency. In addition, the microzones and microbeddings of minerals can be analyzed in-situ to reveal the fine processes and conditions of mineral formation. In this study, using the standard-sample-bracketing (SSB) method, mass bias of the instrument and the fractionation of isotopes were calibrated, and the in-situ determination method of LA-MC-ICP-MS for boron isotopes was established. Through detailed analyses on a series of boron isotope standards and samples, a matrix effect was assessed but not detected, and the analysis results were in accordance with the formerly reported values or P-TIMS determined values, within the error range. The analytical results for IAEA B4 and IMR RB1 with relatively high boron contents were δ11B = –(8.36±0.58)‰ (2σ, n=50) and δ11B = –(12.96±0.97)‰ (2σ, n=57), respectively; the analytical result for IAEA B6 with relatively low boron content was δ11B = –(3.29±1.12)‰ (2σ, n=35). In-situ measurements for B isotopes were performed on geological samples such as tourmaline, ulexite, ludwigite, inyoite and ascharite, with the results consistent with those determined by P-TIMS, within the error range.  相似文献   

9.
Asymmetric somatic hybrid plants were produced between cultivated rice (Oryza sativa L.) and wild species [O. meyeriana (Zoll. etMor, exSteud.)] with high resistance to rice bacterial blight. X-ray-irradiated protoplasts of the wild species were used as donor and chemically fused with iodoacetamide-inactivated protoplasts of rice cv. 02428 to produce hybrids. Seventy-two plants were regenerated from 623 calli based on metabolic complementation. The morphological characters of the plants closely resembled that of the rice. Simple sequence repeats were employed to identify their hybridity. Cytological analysis of root-tips revealed that their chromosome number varied in the range of 27--38. The somatic hybrids were inoculated with strains of Xanthamonas oryzae pv. oryzae at adult growth stage and demonstrated the resistance to bacterial blight introgression from the O. meyeriana.  相似文献   

10.
11.
Hybrid sterility is a major hindrance to utilizing the heterosis in indica-japonica hybrids. To isolate a gene Sc conferring the hybrid sterility, the locus was mapped using molecular markers and an F2 population derived from a cross between near isogenic lines. A primary linkage analysis showed that Sc was linked closely with 4 markers on chromosome 3, on which the genetic distance between a marker RG227 and Sc was 0.07 cM. Chromosome walking with a rice TAC genomic library was carried out using RG227 as a starting probe, and a contig of ca. 320 kb covering the Sc locus was constructed. Two TAC clones, M45EI4 and M90J01 that might cover the Sc locus, were partially sequenced. By searching the rice sequence databases with sequences of the TACs and RG227 a japonica rice BAC sequence, OSJNBb0078P24 was identified. By comparing the TAC and BAC sequences, six new PCR-based markers were developed. With these markers the Sc locus was further mapped to a region of 46 kb. The results suggest that the BAC OSJNBb0078P24 and TAC M45EI4 contain the Sc gene. Six ORFs were predicted in the focused 46-kb region.  相似文献   

12.
Salt stress is one of the major abiotic stresses in agricultural plants worldwide. We used proteomics to analyze the differential expression of proteins in transgenic OsNAS1 and non-transformant Brassica napus treated with 20 mmol/L Na2CO3. Total protein from the leaves was extracted and separated through a high-resolution and highly repetitive two-dimensional electrophoresis (2-DE) technology system. Twelve protein spots were reproducibly observed to be upregulated by more than 2-fold between transgenic and non-transformant B. napus. These 12 spots were digested in-gel with trypsin and characterized by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to obtain the peptide mass fingerprints. Protein database searching revealed that 5 of these proteins are involved in salt tolerance: dehydrogenase, glutathione S-transferase, peroxidase, 20S proteasome beta subunit, and ribulose-1,5-bisphosphate carboxylase/oxygenase. The potential functions of these identified proteins in substance and energy metabolism, stress tolerance, protein degradation, and cell defense are discussed. The salt tolerance of the transgenic rapeseed was significantly improved by the introduction of the OsNAS1 gene from Brazilian upland rice of Oryza sativa (cv. IAPAR 9).  相似文献   

13.
In wheat, plant height is an important agronomic trait, and a number of quantitative trait loci (QTLs) controlling plant height have been located. In this study, using the conditional and unconditional QTL mapping methods, combined with data from five different growth stages over two years of field trials, the developmental behavior for plant height in wheat was dissected. Nine unconditional QTLs and 8 conditional QTLs were identified, of which 6 were detected by both methods. None of the 11 QTLs was detected at all of the 5 investigated developmental stages, but 7 QTLs were detected at certain stages in both years. Further analysis identified 9 unconditional QTLs at different stages, which could explain the phenotypic variation from 4.81% to 17.35%. It was noteworthy that one major QTL designated QHt-4B-2, which was located on chromosome 4B, was detected on May 18 and 25 in both years, and its genetic contributions to plant height ranged from 13.42% to 16.13%. Moreover, of the 8 conditional QTLs identified, six were detected in both years, in the order of QHt-3BQHt-4B-1QHt-4B-2QHt-4DQHt-5A and QHt-2B expressed at the same developmental stage. The results indicate that QTL expression during plant height development is selective and in a temporal order.  相似文献   

14.
Through the anaerobic chromatography on the columns of DEAE 52, Q-Sepharose and Sephacryl S-200, a nitrogenase MoFe protein (△nifZ Av1) was obtained from a nifZ deleted mutant of Azotobacter vinelandii (stain DJ194).The results of Western blotting after anoxic native electrophoresis and SDS-PAGE showed that △nifZ Av1 was similar to wild type MoFe protein (OP Av1) at the electrophoretic mobility, molecular weight and subunit composition. Furthermore, △nifZ Avl was also similar to OP Av1 at the molybdenum content, EPR signal (g≈4.3, 3.65 and 2.01), and the molar extinction coefficient (△ε) of circular dichroism (CD)at 660 nm region. All of these indicated that, besides having the same α2β2 composition as OP Av1, the △nifZ Av1 also contained equal amount of reductive FeMoco in the spin state of S=3/2 to OP Av1. However, the iron content and substrate (C2H2, H^ and N2)-reduction activity of △nifZ Av1 were 74% and 46%-50% of those of OP Av1, respectively. Furthermore, the △ε at around 450 nm, which reflects P-cluster in Av1, was obviously lower than that of OP Av1. It suggested that the difference between △nifZ Avl and OP Av1 resulted from P-cluster rather than FeMoco, and from the half number of P-cluster in △nifZ Av1, but the composition or redoxstate of P-cluster in △nifZ Av1 were not changed. Thus it could propose that △nifZ Av1 is composed of two different αβsubunit pairs. One is a FeMoco-and P-cluster-containing pair, and the other is a P-cluster-deficient but FeMoco-containing pair. Since the deletion of nifZ gene leads to the deficiency of only one of two P-clusters in a α2β2 tetramer, the assembly of P-cluster may not simply depend on one gene product, and so a possible mechanism of NifZ is supposed here.  相似文献   

15.
16.
17.
The rate constants for the ozone reactions with n-butyl methyl sulfide (n-BMS, CHaCH2CH2CH2SCH3), sec-butyl methyl sulfide (s-BMS, CH3CH2(CH3)CHSCHa) and tert-butyl methyl sulfide (t-BMS, (CH3)3CSCH3) were measured using our smog chamber under supposedly pseudo-first-order conditions at 30002 K and 760 Torr. The experimental determined rate constants for n-butyl, s-butyl and t-butyl methyl sulfide are (1.23 ± 0.06)×10-19, (5.08 ± 0.19)×10-20 and (2.26 ± 0.14)×10-20 cm3 molecule-1· s-1, respectively. The reactivity-structure relationship of the reactions was discussed and used to illustrate the mechanism of the ozone reaction with thioethers. The results enrich the kinetics data of atmospheric chemistry.  相似文献   

18.
Asian origin for Polystichum (Dryopteridaceae) based on rbcL sequences   总被引:8,自引:2,他引:6  
Chloroplast rbcL sequences of 60 species of Polystichum sensu lato (s.l.), including 23 new sequences from southwest China, were used to assess the phylogenetic relationships within the genus. On the basis of estimated evolution rate of rbcL gene and the genetic distance data that passed relative-rate tests, we further estimated the divergence times between some clades of the genus. The phylogenetic relationships were inferred using the neighbor-joining and maximum-parsimony methods, both methods producing trees with completely congruent topology. These trees reveal that all species of Polystichum s.l. in this study (including Cyrtomium and Cyrtomidictyum) form a monophyletic group. The basal split in Polystichum s.l. separates a clade with all Asian members from a clade containing other species from all over the world. The phylogenetic and divergence time estimation results lead us to suggest that Polystichum s.l. originated in Asia in the late Late Cretacous (≈76 Ma) and migrated into other places in the world in early Eocene(≈46 Ma).  相似文献   

19.
Gene deletion vector pXL05(pKC1139::△olmA1 △olmA4) was used to disrupt oligomycin PKS encoding genes (olmA ) in Streptomyces avermitilis CZ8-73, the producer of anthelmintic avermectins B and the cell growth inhibitor oligomycin, olmA gene cluster in the chromosome was displaced by deletion allele on the plasmid via double crossover. Four of disruptants were confirmed by Southern blotting. Shaking flask experiments and HPLC analyses showed that the four mutants no longer produced the toxic oligomycin, but only made four components of avermectins B, which were avermectin Bla, Blb, B2a, B2b. The yields of avermectins B in these mutants were separately equal to those in CZ8-73. This revealed that olmA genes deletion did not affect the biosynthesis of avermectins. The deletion mutants were proved to be genetically stable, and thus might be promising strains in industrial production of avermectins B.  相似文献   

20.
Fermentation of the pentose sugar xylose to produce ethanol using lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyce cerevisise, an efficient ethanol producer, cannot utilize xylose because it lacks the ability to convert xylose to its isomer xylulose. In this study, XYLA gene encoding xylose isomerase (XI) from Thermoanaerobacter tengcongensis MB4T and XKS1 gene encoding xylulokinase (XK) from Pichia stipitis were cloned and functionally coexpressed in Saccharomyces cerevisiae EF-326 to construct a recombinant xylose-utilizing strain. The resulting strain S. cerevisiae EF 1014 not only grew on xylose as sole carbon source, but also produced ethanol under anaerobic conditions. Fermentations performed with different xylose concentrations at different temperatures demonstrated that the highest ethanol productivity was 0.11 g/g xylose when xylose concentration was provided at 50 g/L. Under this condition, 28.4% of xylose was consumed and 1.54 g/L xylitol was formed. An increasing fermentation temperature from 30℃ to 37℃ did not improve ethanol yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号