首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
引入了比强α-可逆环更广的两类环:强(M-)α-自反环,并研究了它们的性质。证明了强α-自反环是强α-可逆环的真推广。讨论了强(M-)α-自反环的扩张,得到了它们的一些性质。  相似文献   

3.
引入强遗传环和强半遗传环的概念,并给出了这两类环的一些刻画,得出了一些有意义的结果。  相似文献   

4.
2-环的表示     
利用经典代数中模的定义,给出模的范畴化定义2-模.2-模首先是一个范畴,有对称2-群结构(加法)和一个2-环作用(作用),并且这些作用在同构意义下满足模的准则.另外本文还给出2-模的应用并证明了2-环的一个表示与这个2-环上的2-模是一一对应的,这种对应类似经典代数中环的表示.  相似文献   

5.
强自反环     
设R为一个环,如果对任意a,b,c∈R,aRbRc=0蕴涵aRcRb=0,则称R为强自反环.给出强自反环的一些性质,利用强自反环给出对称环的一个刻画.证明了如下结果:①R是symmetric环当且仅当R是强自反环和IFP环;②半素环是强自反环,但反之不成立;③R是强自反环当且仅当对任意a1,a2,…,an∈R(n≥3),a1Ra2Ra3…Ran=0蕴涵ai1Rai2Rai3…Rain=0,其中i1i2i3…in是1,2,3,…,n的任意一种排列;④设R为quasi-Abel环,x∈R为exchange元,则x为clean元.  相似文献   

6.
强Boole环     
我们知道,任一阶数大于1的有限Boole环B,均存在某个自然数n,使B=A_i,其中每个A_i是单纯理想(参见〔1〕)。 自然会猜测,对于一般的Boole环B,应有结论 B=A_i或B=A_i,其中每个A_i是单纯理想。遗憾的是,这种猜测是错误的,有例子表明,甚至还存在一些Boole环,它们不包含任何单纯理想(参见〔2〕)。 会产生这些怪现象的一个重要原因就是一般Boole环的极大理想未必是直和项。 本文将引进所谓强Boole环的概念,来解决一类特殊的Boole环的结构问题,  相似文献   

7.
8.
文中引入强左(m,n)-凝聚环R(如果左R-模Rm的每个n-生成子模是(m,n)-表现),证明了在强(m,n)-凝聚环上,(P(m,n),I(m,n))和(F(m,n),C(m,n))是遗传余挠理论;每个左R-模是(m,n)-投射当且仅当每个(m,n)-内射左R-模是(m,n)-投射当且仅当每个(m,n)-内射左R-模存在有唯一映射性质的P(m,n)-覆盖.  相似文献   

9.
文中引入强左(m,n)-凝聚环R(如果左R-模Rm的每个n-生成子模是(m,n)-表现),证明了在强(m,n)-凝聚环上,(P(m,n),I(m,n))和(F(m,n),C(m,n))是遗传余挠理论;每个左R-模是(m,n)-投射当且仅当每个(m,n)-内射左R-模是(m,n)-投射当且仅当每个(m,n)-内射左R-模存在有唯一映射性质的P(m,n)-覆盖。  相似文献   

10.
研究了满足某些条件的SF-环的正则性,得到了以下主要结论:①若R是左(或者右)SF-环,且R的所有幂零元的左零化子是本质的左理想,则R是强正则环;②若R是左(或者右)SF-环,则R是除环当且仅当R是左一致环。  相似文献   

11.
定义了环R的一个子集,记做J(R)(12)={a∈R|a2∈J(R)}.称环R中的一个元素a是强J12-clean元,如果存在一个幂等元e∈R和一个元素w∈J(R)(1/2)使得a=e+w且ew=we.如果环R中每个元素都是强J12-clean元,称环R是强J12-clean环.文章研究了强J12-clean环的一些性质和局部环上矩阵环的强J12-clean性.  相似文献   

12.
M-强对称环     
设 M是幺半群,作为强对称环的一般推广,引入了 M‐强对称环的概念,研究了 M‐强对称环的基本性质,得到了 M‐强对称环的一些刻画。  相似文献   

13.
拟强Boole环     
在《强Boole环》一文中,我们已经解决了每个极大理想都是直和项的Boole环的结构问题,本文试图在此基础上解决只有一个极大理想不是直和项的Boole环的结构问题。 这种Boole环确实存在。  相似文献   

14.
M-强对称环     
设M是幺半群,作为强对称环的一般推广,引入了M-强对称环的概念,研究了M-强对称环的基本性质,得到了M-强对称环的一些刻画.  相似文献   

15.
16.
环R称为准正则环,如果环R的每个右理想是由R的若干个幂等元所生成,主要结果是:(1)设R是准正则环,如果R的分式环Q作为右R模是右Noether的,则R是半单Artin环。(2)设R是准正则环,如果环R的每个素右理想都是极大右理想,则R是强正则环。  相似文献   

17.
设R是一个环,称环R的元素e为拟幂等元,如果存在R的某个中心单位k,使得e2=ke。若R中的每个元素都存在拟幂等元e∈R,q∈Rqnil使得e∈comm2(a),并且a=e+q,则称环R是强quasinil quasi-clean环。若环R中每个元素a都存在一个拟幂等元e∈R使得e∈comm2(a),a+e∈U(R)且ae∈Rqnil,则称R是拟quasi-polar环。本文首先证明拟quasi-polar环与quasi-polar环等价,在此基础上进一步证明强nil quasi-clean环是强quasinil quasi-clean环,强quasinil quasi-clean环是quasi-polar环,但反之均不成立。  相似文献   

18.
本文中证明了如下主要结果:1对于准正则环R,下面条件是等价的:(1)R是强正则环;(2)R是约化的;(3)R是半交换环;(4)R是左双环;(5)R的幂等元都是中心幂等元.2R是强正则的当且仅当R的不分解南环是拟左(右)duo准正规的.  相似文献   

19.
引入了强g(x)-诣零clean环的概念,讨论了几类强g(x)-clean环的关系,给出了这类环和强诣零clean环的一些等价刻画,研究了这类环的基本性质,进一步探究了几种特殊的强g(x)-诣零clean环的性质。  相似文献   

20.
研究了三角环上强2保交换广义导子的表示形式,将相关结果应用到了上三角矩阵环上,推广了齐霄霏的结果~([1])。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号