共查询到20条相似文献,搜索用时 0 毫秒
1.
《南阳理工学院学报》2019,(6)
针对风电功率预测问题进行研究,为了提高风电功率预测的精度,首先利用拉依达法则对原始数据进行预处理,以此来保证数据的完整性和准确性,其次利用梯度提升决第树算法构建时间预测模型,并对该模型进行计算和验证。根据本研究的日前预测问题,将其同常规BP神经网络算法相比较,结果显示所提出的基于GBDT的风电功率预测模型较BP神经网络在该问题上具有更优的预测性能。 相似文献
2.
焦炭是高炉炼铁的重要原料,其质量是影响铁水质量和高炉顺行的重要因素,针对焦炭质量存在检验难、滞后性、预测误差大等问题,提出一种基于梯度提升决策树算法的焦炭预测模型;结合专家经验与相关性分析方法,深入研究配合煤质量对焦炭质量的影响;最后利用配合煤质量指标对焦炭质量指标灰分、硫分、耐磨强度、抗碎强度进行建模预测;根据某焦化厂历史生产数据对模型进行评估,实验结果表明:基于梯度提升决策树的焦炭质量预测模型相较于线性回归模型、随机森林模型,决策树模型误差小、准确率高,可以为焦化厂配煤炼焦提供一定的理论依据。 相似文献
3.
李根 《东南大学学报(自然科学版)》2018,(3)
为研究高速公路匝道车辆在交织区的汇入行为,基于梯度提升决策树(GBDT)建立了车辆汇入模型,引入超车时间T、拒绝间隙数N以及最大拒绝间隙G_(LR)来分析匝道车辆拒绝相邻间隙并超越主线前车的行为,并利用美国NGSIM项目中的车辆轨迹数据对模型进行训练和测试.结果表明:GBDT的预测精度较分类回归树和二元Logit模型分别提高5.3%和13.3%;引入变量T,N,G_(LR)使GBDT、分类回归树和二元Logit模型的预测精度分别提高6.0%,6.7%和5.3%;GBDT模型中超车时间T在所有变量中重要性值最高.GBDT模型能够准确地预测汇入行为,获得变量与汇入行为间隐藏的非线性关系;引入变量T,N,G_(LR)能够有效提高汇入模型的预测精度. 相似文献
4.
为了提取城市路网中车辆实际的行驶轨迹,支撑交通规划、设计、管理和评价等需求,提出了基于梯度提升决策树的城市车辆丢失路径链的重构方法。首先,根据车牌号码匹配目标车辆,以时间排序提取视频检测器获得的路径链,并结合交叉口邻接矩阵及路段行程时间估计进行路径链初次分离;然后,依据车辆出行特征和交通状况提取影响路径选择的关键特征,并基于此提出了基于梯度提升决策树的局部丢失路径链重构算法;最后,以某市南明区实际视频车牌识别数据为例,根据重构算法准确性和计算效率验证了文中算法与传统算法。结果表明,本文算法的重构准确率达到91%,对比传统算法,梯度提升决策树算法在车辆路径链重构方面有较大优势。 相似文献
5.
针对糖尿病数据特征维度较高,单一分类器过度拟合导致性能受限,不能较好对糖尿病进行分类识别这一问题,提出了一种深度置信网(Deep Belief Networks,DBN)融合梯度提升决策树(Gradient Boosting Decision Tree,GBDT)的糖尿病检测算法(DBN-GBDT).该算法利用DBN对海量数据的特征提取和拟合复杂模型的能力,GBDT算法具有很强的泛化能力,将DBN用于特征提取和特征降维,GBDT方法用于分类.将提出的算法用于糖尿病数据分类识别,并与DBN、GBDT、SVM和随机森林四种经典方法进行对比.实验结果表明,该算法分类精度较高,稳定性更强,为糖尿病检测提供了新的方法. 相似文献
6.
针对传统故障诊断模型面向海量故障数据时诊断准确度低的问题,首先,提出了一种局部均值分解与固定点算法联合降噪方法,以消除轴承振动信号中的噪声;其次,为了避免原始信号中敏感特征难以提取的问题,提出了一种基于核主成分分析的降维方法;再次,构建了一种基于改进极端梯度提升决策树的故障诊断模型,采用GS-PSO算法优化SVM性能,进而运用改进极端梯度提升决策树思想修正分类模型的残差以提升模型分类精度,应用Spark-大数据平台,通过并行处理技术进行科学计算;最后,采用CWRU提供的滚动轴承数据进行训练与仿真,证明构建的模型能实现对不同类型滚动轴承的识别诊断,并保证诊断结果的准确率。通过对4种不同故障诊断模型的对比分析,表明本文模型具有可行性和优越性。 相似文献
7.
活力出行与老年人移动能力、身心健康和生活品质息息相关.以厦门为案例,采用极端梯度提升决策树模型,探究建成环境和老年人活力出行之间的非线性关系.研究发现:出行距离是影响老年人是否活力出行的最重要因素;建成环境要素的相对重要性远高于社会经济属性;全部建成环境变量与老年人活力出行之间均存在复杂的非线性关系和阈值效应;出发地和目的 地建成环境变量的影响模式存在异同. 相似文献
8.
活力出行与老年人移动能力、身心健康和生活品质息息相关.以厦门为案例,采用极端梯度提升决策树模型,探究建成环境和老年人活力出行之间的非线性关系.研究发现:出行距离是影响老年人是否活力出行的最重要因素;建成环境要素的相对重要性远高于社会经济属性;全部建成环境变量与老年人活力出行之间均存在复杂的非线性关系和阈值效应;出发地和目的 地建成环境变量的影响模式存在异同. 相似文献
9.
为了确定多标签分类器链方法的链序以及挖掘出高阶标签关联性,提出了一种基于梯度提升的多标签分类器链方法.给出了GB C C整体框架,通过一种预剪枝策略对单一标签进行梯度提升,在此过程中利用标签置信度和误差评价分数确定最佳链序,并在各个标签间进行标签传递和特征传递,以挖掘高阶标签关联性.将所提出方法与4种分类器链方法(CC、ECC、OCC、EOCC)以及4种多标签分类方法(BR、HOMER、MLKNN、CLR)在bibtex、Corel5 k等12个多标签数据集上进行对比试验.结果表明:新方法在各个评价指标(micro-F1、macro-F1、Hamming loss、One-error)下不仅能够有效提升预测性能,而且能够保持分类器链方法的简单灵活性. 相似文献
10.
11.
为了提高井下定位系统的定位精度,提出了基于梯度提升回归树(gradient boost regression tree, GBRT)的井下定位算法。本文首先介绍了GBRT算法的实现过程,然后利用射线追踪算法模拟井下多径信号叠加后的接收信号强度(received signal strength, RSS)数据集,最后对比了GBRT、K最近邻(k-nearest neighbor, KNN)、随机森林(random forest, RF)、支持向量机(support vector machine, SVM)和神经网络多层感知器(multi-layer perceptron regressor, MLPR)算法的定位结果并对GBRT的定位结果进行5点平均滤波。实验结果表明,在100个点组成的行人轨迹定位中,GBRT算法的定位结果的均方误差为0.381米,明显优于其他四种算法,平滑滤波后的定位轨迹更加贴合真实轨迹。因此,本算法可以有效提高定位精度,可以满足井下定位系统的精度要求。 相似文献
12.
13.
提出一种新型梯度强度立柱结构,使侧翻时客车立柱不同位置的强度与受力匹配.对梯度立柱分析表明:新型梯度强度立柱结构明显提高了客车侧翻安全性能.结合最优拉丁方实验设计和径向基近似技术,构建了设计响应的高精度近似模型,并采用多目标遗传算法对其寻优.优化结果表明:通过对梯度强度立柱结构的强度与壁厚的合理匹配,不仅使得客车的侧翻安全性得到较大的改善,而且达到了客车轻量化设计的目的. 相似文献
14.
针对单神经网络模型外推效果不理想、泛化能力较差的缺点,将神经网络集成用于诺西肽发酵过程的建模.采用Bagging技术进行重复取样用于个体神经网络的训练,结论生成时采用加权平均法,各子网络的权重利用差分进化算法来确定.个体神经网络选用典型的动态神经网络Elman网络,通过对多个Elman神经网络模型的输出进行融合,建立了基于神经网络集成的诺西肽发酵产物浓度模型.最后将所建立的模型与基于单神经网络的模型进行了比较,结果说明该模型具有更高的精度和泛化能力. 相似文献
15.
城市轨道交通作为低能耗、少污染、具有可持续属性的公共交通类型之一,其对沿线城市发展、居民生产生活产生深远影响。中国城市轨道交通建设目前仍处于高速发展阶段,部分站点周边地区面临空间利用率不匹配、潮汐客流趋势加重等问题。城市轨道交通站点周边地区的城市空间规划需关注城市居民的活动特征,以提升站点地区城市空间全时段活力。以南京市中心城区内轨道交通站点周边地区为例,基于城市空间开放数据、实地踏勘调研、互联网移动定位服务(location based service, LBS)数据,采集统计与评价建成环境现状与居民活动特征数据,并运用梯度提升决策树与SHAP(Shapley addictive explanation)解释分析站点地区建成环境与居民活动的非线性关系及建成环境要素之间的交互作用,在此基础上提出建成环境要素适宜区间及协同优化条件,为城市轨道交通站点周边地区空间规划与优化提供建议。 相似文献
16.
针对探地雷达A-scan数据检测多类公路深层病害准确率不高的问题,首先通过实地数据采集、钻芯取样技术,结合数据预处理和专家解释过程,建立大量具有公路深层病害类别标签的A-scan数据库。对不同类别与不同严重程度的病害表征进行对比分析,充分挖掘公路深层病害的细节表征。最后,基于时域-频域多维度,选取A-scan反射波的能量、方差、峰度和对数功率谱作为特征值,引入人工智能分类方法中表现出色的极限梯度提升XGBoost算法(Extreme Gradient Boosting)对数据进行训练和分类预测。结果表明:通过对病害特征的有效提取,XGBoost分类算法对脱空、疏松、裂缝或断层类病害的识别精度均可达90%以上。 相似文献
17.
互联网与实体经济融合发展背景下,网络优惠券往往承担了提升用户体验、促进再次消费的重要功能。构建梯度提升树、随机森林等模型,预测网络优惠券使用行为;并对影响因素的重要性进行排序。结果表明:梯度提升树算法的五折交叉验证平均测试精度、曲线下面积值分别为0. 804与0. 886,高于随机森林与单棵决策树算法。优惠券折扣率对于用户使用优惠券行为起着决定性影响,用户经常活动的地点离该商户最近门店的距离、领取优惠券时间等特征对用户使用优惠券行为具有重要影响。 相似文献
18.
决策树是数据挖掘中的一种重要分类方法。在此以粗糙集理论中的正域为启发式函数,设计了一种新的、有效的决策树构造方法。该算法具有较大的灵活性,能从测试属性空间逐次删除已使用过的属性。避免对这些属性进行重复测试,减少测试空间,降低了树的复杂性,从而提高了分类效率。最后,实例验证了算法的可行性与有效性。 相似文献
19.
20.
机器学习用于地质灾害的易发性评价分析是当前研究的热点之一,不同的学习模型其效果不尽相同。为合理有效地评价滑坡地质灾害的易发性,依托浙江省温州市飞云江流域地质灾害的调查数据,应用地理信息系统(Geographic Information System,GIS)技术提取坡度、坡向、坡形、地表覆盖、地形湿度指数(Topographic Wetness Index,TWI)、极端小时降雨量、内摩擦角、黏聚力、容重与风化层厚度10个滑坡致灾因子,基于极端梯度提升算法(eXtreme Gradient Boosting,XGBoost)构建模型用于滑坡地质灾害的易发性多分类评价。模型结果通过多分类混淆矩阵进行评价,并与支持向量机(Support Vector Machine,SVM)模型进行精度比对分析。研究结果显示,训练后的XGBoost 算法模型对测试集中极高易发区识别的召回率和精确率分别达到了97.92%和98.06%,F1值达到97.99%,均优于SVM,可为研究地区的滑塌地质灾害易发性评价提供模型支持。 相似文献