共查询到18条相似文献,搜索用时 46 毫秒
1.
一种基于语义距离的高效文本聚类算法 总被引:6,自引:0,他引:6
摘 要:提出了一种基于语义进行文本聚类的新方法。该方法从语义上具体分析文档,利用文档具体语义计算文档间的相似度,使得文档聚类结果更合理。文本聚类主要采用最近邻聚类算法,并提出第二次聚类算法改进最近邻算法对输入次序敏感的问题。类特征词的选择上根据相似度权重优胜略汰类特征词,使得最后类特征词越来越逼近类的主题。实验结果表明本文所提出的算法在聚类精度和召回率上均优于基于VSM的K-Means聚类算法。 相似文献
2.
针对目前短文本词汇量少、 表达形式多样, 导致同种类文本聚类方法无效的问题, 提出一种利用中文维基百科的丰富词汇间关系对短文本的隐喻词进行扩充的方法, 以解决短文本包含信息少、 词汇表达形式多样的不足. 实验结果表明, 该算法可有效提升短文本的聚类效果. 相似文献
3.
在研究零售户聚类分析中,传统的k中心聚类方法,计算成本过大,无法有效应用子大数据集.提出了零售户聚类方法,继承CLARANS算法迭代思想,采用全局随机抽样技术,将算法应用于大型空间数据集,通过多次迭代尽量寻求最优聚类结果.聚类结果的评价标准为基于最短主干道距离(SARD)的总距离.该聚类算法是在CLARANS算法的基础上进行改进,使其能够处理带地理信息的数据对象,且聚类结果满足需求约束条件限制. 相似文献
4.
基于类的统计语言模型是解决统计模型数据稀疏问题的重要方法.传统的统计方法基于贪婪原则,常以语料的似然函数或困惑度(perplexity)作为评价标准.这种传统的聚类方法的主要缺点是聚类速度慢,初值对结果影响大,易陷入局部最优.本文提出了一种新颖的词相似度定义,在词相似度的基础上,还首次给出了词集合相似度的定义.基于相似度,提出了一种自下而上的分层聚类算法,这种方法不但能改善聚类效果,而且可根据不同的模型选择不同的相似度定义,因而提高聚类的使用效果.实验证明,该算法在计算复杂度和聚类效果上比传统的基于贪婪原则的统计聚类算法都有明显的改进. 相似文献
5.
目的 通过对现有聚类常用算法的研究,给出一种适用于大规模中本数据集聚类的算法DBTC(density-based text clustering)。方法 采用在DBSCAN算法基础上改进提出的DBTC算法,对中本数据集进行聚类。结果 DBTC算法可以发现任意形状的簇,对中本聚类的准确率高达80%以上。结论 经过分析和实验证明DBTC算法比基本的DBSCAN算法更适合于大规模数据集。 相似文献
6.
建立快速有效的针对大规模文本数据的聚类分析方法是当前数据挖掘研究和应用领域中的一个热点问题.为了同时保证聚类效果和提高聚类效率,提出基于"互为最小相似度文本对"搜索的文本聚类算法及分布式并行计算模型.首先利用向量空间模型提出一种文本相似度计算方法;其次,基于"互为最小相似度文本对"搜索选择二分簇中心,提出通过一次划分实现簇质心寻优的二分K-means聚类算法;最后,基于MapReduce框架设计面向云计算应用的大规模文本并行聚类模型.在Hadoop平台上运用真实文本数据的实验表明:提出的聚类算法与原始二分K-means相比,在获得相当聚类效果的同时,具有明显效率优势;并行聚类模型在不同数据规模和计算节点数目上具有良好的扩展性. 相似文献
7.
一种提高文本聚类算法质量的方法 总被引:1,自引:0,他引:1
冯少荣 《同济大学学报(自然科学版)》2008,36(12)
针对基于VSM(vector space model)的文本聚类算法存在的主要问题,即忽略了词之间的语义信息、忽略了各维度之间的联系而导致文本的相似度计算不够精确,提出基于语义距离计算文档间相似度及两阶段聚类方案来提高文本聚类算法的质量.首先,从语义上分析文档,采用最近邻算法进行第一次聚类;其次,根据相似度权重,对类特征词进行优胜劣汰;然后进行类合并;最后,进行第二次聚类,解决最近邻算法对输入次序敏感的问题.实验结果表明,提出的方法在聚类精度和召回率上均有显著的提高,较好解决了基于VSM的文本聚类算法存在的问题. 相似文献
8.
Lizhihao Rao Juan 《科技信息》2007,(35)
文本分类是指在给定分类体系下,根据文本的内容自动确定文本类别的过程。如何快速地整理海量信息,对不同的文本进行有效分类,已成为获取有价值信息的瓶颈。本文用模糊聚类分析的方法对文本进行分类,较好地解决了信息的实时分类问题,在实践中收到了良好的效果。 相似文献
9.
数据聚类是常用的无监督学习方法,通过词嵌入聚类能够挖掘文本主题,但现有研究大多数采用常规聚类算法挖掘词嵌入的簇类,缺少基于词嵌入特性设计实现词嵌入聚类的主题挖掘算法.该文从语言模型通过建模词间相关信息来使相关及语义相似词的嵌入表示聚集在一起的特点出发,设计词嵌入聚类算法.该算法首先计算中心词的簇类号,然后使该簇中心嵌入和相邻词嵌入的相似性增强,同时使其与负样本词嵌入远离,学习文本集词嵌入的簇类结构,并将其应用于文本主题挖掘.在3种公开数据集上的实验表明:该算法在一些模型的词嵌入结果上能够挖掘出一致性和多样性更好的主题结果. 相似文献
10.
提出了一种利用传统向量空间模型VSM(Vector Space Model)和词共现概念共同表示文档特征的新方法,并将该方法应用于基于平面划分的中文文本聚类中.通过实验,表明基于传统VSM和词共现概念的文本聚类方法与传统的单纯基于 相似文献
11.
互联网中出现的短文本内容短小,相互共享的词汇较少,因此在分类过程中容易出现大量的集外词,导致分类性能降低。鉴于此,提出了一种基于词矢量相似度的分类方法,首先利用无监督的方法对无标注数据进行训练得到词矢量,然后通过词矢量之间的相似度对测试集中出现的集外词进行扩展。通过与基线系统的对比表明,该方法的分类正确率均优于基线系统1%~2%,尤其是在训练数据较少的情况下,所提出的方法的正确率相对提高10%以上。 相似文献
12.
稀土金属是一个国家重要的战略资源,我国作为稀土资源大国,却由于缺乏核心专利技术制约了稀土资源的深度开发。为了研究稀土核心专利技术的演进过程,解决我国稀土专利布局的问题,本文利用Lingo文本聚类算法对国内外稀土领域专利信息进行了深入的分析,研究和探索了稀土萃取领域专利申请主体的迁移和研究主题的变迁,并通过可视化的专利地图加以展示。本文的研究结果为我国追踪稀土萃取专利研究热点提供一定的借鉴和参考,对于我国企业专利信息应用、技术研发和知识产权规划布局具有重要意义。 相似文献
13.
由于词语的多语义问题和传统的文本表示与聚类过程相互独立的问题,导致文本聚类准确率较低。针对上述问题提出一种基于多语义文本表示的自适应模糊C-均值(Multi-semanticSrepresentationSbasedSadaptiveSfuzzySC-means, MSR-AFCM)聚类算法。通过将词语软聚类划分成多个词簇构建多个语义空间,将语义空间个数作为文本初始聚类数目,利用词语的语义隶属度计算每个文本属于文本空间的语义隶属度,并以此为对隶属度进行初始化。在算法运行过程中,根据更新的文本语义隶属度和文本分布状况,逐步剔除冗余的文本空间,以达到优化聚类数目的目标。实验结果表明,MSR-AFCM算法相较于传统的聚类算法有更高的准确率和兰德系数,验证了算法的有效性。 相似文献
14.
本文提出了利用文本频谱进行中文文本轮廓分析的表征方式.该方法基于不同时代、体裁和领域的文本在文字使用方面具有偏好性的假说,以文本中单个字符为单位,通过文本频谱刻画方法统计所有单字符在文本中出现的频率,并使用刻画出的文本频谱对文本进行表征;利用频谱比对分析技术,可计算出任意文本间的距离,并以此距离为基础进行聚类分析.进一步的实验证实了该方法的有效性. 相似文献
15.
在非结构化数据挖掘结构模型——发现特征子空间模型(DFSSM)——的运行机制下,提出了一种新的Web文本聚类算法——基于DFSSM的Web文本聚类(WTCDFSSM)算法.该算法具有自稳定性,无须外界给出评价函数;能够识别概念空间中最有意义的特征,抗噪声能力强.结合现代远程教育网应用背景实现了WTCDFSSM聚类算法.结果表明:该算法可以对各类远程教育站点上收集的文本资料信息自动进行聚类挖掘;采用网格结构模型,帮助人们进行文本信息导航;从海量文本信息源中快速有效地获取重要的知识. 相似文献
16.
随着万维网的快速普及和发展,Web上出现了大量短文本,如科技文献摘要、微博和电子邮件等.短文本内容短小,相互联系,已标注数据获得困难,导致传统分类方法很难取得较高的分类精度.为了解决短文本分类问题,提出了一种基于半监督学习的迭代分类算法(SS-ICA).它使用较少的已标记数据,利用短文本间的关系进行迭代分类.通过与常用分类方法进行对比表明,在标注数据较少的情况下SS-ICA比其他分类器有更高的分类精度. 相似文献
17.
FENG Zhonghui SHEN Junyi BAO Junpeng 《武汉大学学报:自然科学英文版》2006,11(5):1340-1344
0 IntroductionText clusteringis the process of grouping the documentsinto the classes or clusters so that documents within acluster have high si milarityin comparisonto one another ,butare very dissi milar to documents in other clusters .In applica-tions ,the document is always represented by vector spacemodel(VSM) in which each document is represented as a vec-tor and each unique termis of one di mension of this vector .Then,documents are clustered bycalculating distance or si mi-larity[1], … 相似文献
18.
短文本具有不同于普通文本的独有特点,例如文本长度较短,特征选择分散不一,这使得短文本文类需要处理这些特殊的问题.本文使用了基于主题本体的特征扩展方法,考虑了特征之间的语义关联,达到了较好的分类性能.同时,通过GC(扩展能力)算法使用了案例维护学习,在K-近邻算法中减少样例个数,从而可以提高搜索近邻样例的效率.数值型实验证明了这种学习算法的有效性. 相似文献