首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为快速、 准确地对日益复杂的大规模社会网络进行社区划分, 提出一种基于相似度投票的改进算法替代Louvain算法的底层划分, 解决了Louvain算法在底层划分收敛速度较慢, 并出现大量重复计算的缺点, 使社区划分更迅速. 由真实社会网络数据实验结果可见, 与Louvain算法相比, 改进算法在保持模块度基本不变的情况下, 效率显著提高, 划分的社区数更少、 社区结构更紧凑.  相似文献   

2.
针对移动社交网络中用户连接不确定,网络资源有限所导致的内容分享成功率低、开销大的问题,提出一种用户相似度感知的移动社交网络内容分享机制.通过分析用户行为,感知用户稳定态和变化态的兴趣度,并评估用户之间兴趣吻合度,进而结合用户交互频繁程度及用户活动区域一致性,获知用户相似度及逻辑关系.最后根据用户相似度,建立带有用户兴趣稳定态和变化态的虚拟社区,实现低成本、高成功率的内容分享.结果表明:所提机制在有效提高内容分享成功率的同时,极大限度地降低了网络开销率.  相似文献   

3.
为实现加权网络的准确划分,发现真实的社区结构,提出一种基于模块度和共邻节点相似性的层次聚类社区划分方法IEM.首先,定义两节点间基于共邻节点的相似度.之后,基于该度量快速聚合当前节点和与其关联紧密度最强的邻居节点以形成初始社区,并进行社区扩展.最后,以最大化网络模块度为目标进行社区合并以优化划分结果.算法通过形成初始社区、扩展社区、合并社区三步,实现了加权网络合理有效的社区划分.以加权模块度作为社区划分质量的评价标准,在多个数据集上的实验结果表明,IEM算法优于加权CN、加权AA、加权RA.同时,与CRMA算法相比,IEM算法对加权网络社区划分的有效性和正确性更高.  相似文献   

4.
微博作为近年来用户数量较多的社交应用,其用户的信息压力也相对较大,推荐技术对于微博用户的体验和推广有很明显的帮助.本文将针对微博平台的好友推荐进行研究,分别采用基于社交网络分析和基于协同过滤技术的推荐算法.经过两种算法的实验对比得出结论:基于协同过滤的好友推荐算法具有较好的性能,在推荐好友数量较多的情况下依然具有较高的综合评价指标,提高了好友推荐的质量.  相似文献   

5.
基于相似度的加权复杂网络社区发现方法   总被引:2,自引:0,他引:2  
针对加权复杂网络中的社区结构发现问题,本文定义基于权重关系的相似度,并在此基础上定义了节点中心度和归属度,改进GN算法的模块度评价函数,提出一种基于相似度的中心聚类算法(SCC).该算法通过计算节点间的相似度,选取合理的中心度大的节点作为社区中心节点,最后基于节点归属度来聚集从而形成社区;同时,提出了用相似度代替边介数的改进GN算法SGN.通过理论分析,并在数据集上进行实验验证,结果表明SCC算法与WGN算法、SGN算法相比,速度和精度上均有较大改善.同时与I2C算法相比,社区的划分有效性更好.  相似文献   

6.
以微博用户推荐算法中相似度计算为研究对象,根据微博用户关注信息的特点,分析了关注用户的流行度的不同程度,以及这种程度差异对相似度计算产生的影响,在此基础之上提出了一种加入流行度制衡因子的相似度计算方法.可通过流行度制衡因子,在计算用户相似度时,适度减少(增加)流行度偏高(偏低)的用户对计算结果的影响.实验结果表明:加入流行度制衡因子的用户相似度计算具有更好的推荐效果.  相似文献   

7.
8.
针对基于社交网络的事件推荐覆盖性和准确性不够高的问题,提出了基于用户相似度Si-user Walker算法.该算法利用基于事件的社交网络特征,将线上用户群组数据抽象为图,以重启随机游走算法为基础,改变了传统的完全基于图的拓扑结构进行随机游走的策略.根据地理位置划分事件类型,提出了新的用户相似度计算方法,然后根据用户相似度矩阵作为随机游走的转移概率,既保留了图的传递性,又保证了图节点游走的真实性.与其他推荐算法在真实的数据集上实验表明,该算法在均方根误差、准确率及覆盖率上均得到提升.  相似文献   

9.
微博类社交网络中信息传播的测量与分析   总被引:1,自引:0,他引:1  
为了更好地掌握在线社交网络中信息传播的特征规律和用户行为,以新浪微博为代表对社交网络中的信息传播进行了较大规模的测量、统计和分析,提出了一种三角和算法用于探测用户粉丝数阈值。该算法根据散点分布的统计规律来估计使微博热度达到某一值的粉丝数的临界值,发现为使微博热度大于10,用户粉丝数应大于150。其他测量分析结果表明:新浪微博具有很强的\"名人效应\",用户频繁地发帖并不能引起较大的关注,热门微博的热度几乎都以激增方式增长。这些结论对网络营销和网络监管具有参考价值。  相似文献   

10.
针对基于结构近似度的聚类算法无法解决非对称网络聚类的问题,该文根据社交网络的特点,提出了基于结构近似度的有向社交网络聚类算法,通过将社交网络抽象为图结构,将网络聚类问题看成图论中的子图划分问题,实现了对社交网络的准确聚类分簇,且分簇复杂度较低。使用C++语言编程实现该算法,通过自定义有向网络数据集和标准数据集的测试表明,该算法对社交网络结构的划分较为准确,且能鉴别离群节点和枢纽节点。  相似文献   

11.
基于先验知识与模块性的网络社区结构探测算法   总被引:2,自引:0,他引:2  
在分析模块性指标和Newman有关网络社区结构探测算法的基础上,提出了一种基于先验知识与模块性的社区结构探测算法.利用节点度等社会网络结构先验知识,获得一个社区结构的基本划分,然后进行社区的合并,以此获得一个清晰的社区结构.经计算机模拟网络、Ucinet软件网络和中国农民工社会网络的社区结构探测,结果表明所提算法比Newman的迭代次数减少近50%,并且可以获得更好的模块性指标.  相似文献   

12.
传统的社团发现算法大多存在划分效果和复杂度相矛盾的问题,为了解决该问题,提出一种新的单社团结构评价标准——社团密合度(group density).在此基础上,设计了一种基于凝聚思想的社团发现算法,该算法通过不断融合小社团,使网络的社团结构向平均社团密合度最大的方向发展,并使用模块度检测算法的划分结果.通过与经典的GN,Fast Newman,LPA等算法对多个数据集进行实验对比,验证了本文算法在获得较好的划分效果的同时具有较低的时间复杂度.  相似文献   

13.
由于当前的算法不能很好地将网络的联通性和单个节点的属性综合考虑,分析了凝聚和分裂层次聚类经典算法的局限性,从而给出边的载荷、边的权重、连接度门限、图形分割等定义.综合考虑网络的拓扑结构和边的权重关系,提出了基于广度优先搜索的社会网络社区发现算法SoNetCD.算法通过删除社区之间的边而得到社区结构,它对社区之间的边判断准确,对社区内部的边误删率低.运用经典数据集进行实验的结果表明,该算法具有比经典GN算法更好的结果.  相似文献   

14.
社团结构检测有助于揭示复杂网络的结构-功能特性,目前已有的社团检测算法在其研究过程中存在着分辨率限制、节点不确定性以及需要先验参数等问题.为了解决此类问题,提出了一种基于网络节点极大团的社团检测算法(BMC).BMC算法将网络中的节点极大团设为初始节点群组,依据提出的极大团局部相似度和局部团组关系对节点群组进行分级聚类合并,以此挖掘出网络中的社团结构.针对在社团结构挖掘过程中出现的节点不确定性问题,通过模块度矩阵提出了模块隶属度对网络中的单邻居节点和重叠节点进行优化.为了验证BMC算法对网络社团结构挖掘的准确性,在5个真实网络数据集上与5种算法进行实验对比.通过3种衡量指标得到的实验结果表明,BMC算法能够准确地检测出网络中的社团结构.  相似文献   

15.
基于社会网络的静态和动态特征, 研究社会网络中的社区发现问题. 针对静态社会网络, 提出了边的Ξ系数及紧密度阈值等概念和Detstructure算法; 针对社会网络的动态特性, 提出了基于衰减策略的融合挖掘算法. 所提出的两种算法在应用中都取得了较好的效果.  相似文献   

16.
针对现有的社团分析算法无法在大规模网络上应用的问题,提出一种社团抽取算法,可以高效地分析网络的社团特征.该方法无需事先获取网络的全部拓扑结构,采用网络搜索与社团判定相结合的思路,可有效地抽取结构未知的社交网络上的某个特定社团,从而使分析超大规模网络社团结构成为可能.在仿真数据集上进行实验,分析抽取准确率的影响因素,得出网络平均度越大抽取准确率越高.进一步实验结果表明,社团抽取算法的准确率与现有方法接近,并且执行效率明显高于现有方法,验证了该算法的可行性和有效性.  相似文献   

17.
由于互联网络拓扑结构复杂,节点数目庞大。因此直接绘制几乎是不可能的。借助Transit-Stub模型,把互联网分成不同的层和模块。通过对单个层和模块的绘制,就可以展示某一域内的网络拓扑结构。这个域是整个网络的局部网络拓扑结构。最后,针对局部网络拓扑介绍了绘制算法。  相似文献   

18.
复杂网络中的社区发现--理论与应用   总被引:18,自引:0,他引:18  
复杂网络是对于复杂系统的高度抽象,其中许多性质如小世界性质、无标度性质以及聚集性质等等已经得到了充分的研究。大量文献表明,复杂网络呈现出的社区结构(Communitystructure)特性,以及如何在大型网络中高效地发现社区(Communityfinding)问题是近年来复杂网络的研究热点。本文较为全面地综述了关于社区发现方面的概念、理论、算法及应用等,期望对于社区发现问题的进一步研究及若干基本问题的早日解决起到一定作用。  相似文献   

19.
针对现有智能优化算法解决复杂网络社区发现问题存在求解适应度函数精度低、算法收敛速度慢等不足,在基本蝙蝠算法框架下,结合遗传算法的思想,提出一种自适应进化蝙蝠算法。首先,算法以模块度函数作为适应度函数,采用基于字符的编码方式,利用标签传播方法初始化种群;然后,将蝙蝠个体的速度转化为变异概率,使用交叉变异算子更新位置,从而实现蝙蝠的自适应进化;最后,在计算机生成网络和真实网络环境下进行仿真实验。研究结果表明:与用于社区发现的其他智能算法相比,该算法具有收敛速度快、求解精度高的优点,更适合大规模网络下的社区发现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号