首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
介绍了关联规则挖掘的研究情况,提出了基于聚类的周期关联规则挖掘算法,分析了该算法存在的问题并提出解决方案,展望了关联规则挖掘的未来研究方向.  相似文献   

2.
介绍了关联规则挖掘的研究情况,提出了基于聚类的周期关联规则挖掘算法,分析了该算法存在的问题并提出解决方案,展望了关联规则挖掘的未来研究方向.  相似文献   

3.
由于在实际的数据挖掘过程中容易出现无用的频集和冗余的规则,所以降低频集和规则的冗余度可大大提高挖掘的质量,这也是数据挖掘中一直被关注的问题,提出了一个用等价类生成关联规则的方法,算法主要在频集的基础上建立项集的等价关系,进而对项集划分等价类,同时将得到的关联规则划分为精确关联规则和近似关联规则两个集合,通过等价类,不但可以很容易地生成所需要的关系规则,同时可以方便地判断数据之间依赖关系的强弱,同时,项集的等价关系在实际应用中也很有利用价值,算法最后的规则结果集剔除了由来自同一等价类中的面集的重复出现构成的冗余规则,从而得到了较小的关联规则集合。  相似文献   

4.
对数据挖掘中的关联规则挖掘算法进行了研究、探讨和比较。在分析关联规则最具代表性两类算法的基础上,提出了一种挖掘算法的改进思想,并对关联规则进行了展望。  相似文献   

5.
数据挖掘在各行业发挥着越来越重要的作用,随着数据挖掘中数据量的高速增长以及大规模计算在数据挖掘中的应用,挖掘算法处理海量数据的能力问题日益突出。研究并行算法是解决这一问题的有效途径,该文对常见的数据挖掘关联规则及聚类并行算法进行了研究探讨。  相似文献   

6.
序列模式可预测企业的发展方向,负关联规则可展现不良因素的根源,序列模式的正负关联规则为企业决策提供更全面的信息. 将序列模式和负关联规则的挖掘算法相结合,利用项集间的相关性,挖掘出序列模式的正负关联规则.  相似文献   

7.
潘东静 《枣庄师专学报》2001,18(5):15-17,22
本文介绍了关联规则的概念,并通过一个例子说明了关联规则挖掘的一种算法--Apriori算法,指出了数据挖掘未来研究的重点和方向。  相似文献   

8.
在关联规则挖掘中,大量的数据是多维的,且带有时态特性,所以往往需要在时态约束的前提下挖掘多维关联规则.本文从一个实际问题出发,在单维Apriori算法和已有的工作基础上,提出了一种新的多维时态关联规则挖掘算法,并与类似算法进行了比较.  相似文献   

9.
一种数据挖掘关联规则的高效算法   总被引:4,自引:0,他引:4  
关联规则是数据挖掘的一个重要课题,本文提出了一种新的算法,可以大大减少扫描数据库的次数,能够灵活的在时空两方面取得折衷,提高了效率。  相似文献   

10.
简要介绍了关联规则的概念及其基本思想,重点分析和讨论了两个挖掘关联规则的经典算法,即Apriori算法和分段算法。  相似文献   

11.
为了解决利用关联规则进行购物篮挖掘分析存在的两个问题:由于数据挖掘前的业务分析不足,不能有效的挖掘出想要的规则;按照传统的关联规则参数设置挖掘得到的关联规则太多,用户无法对其进行取舍.结合实例销售数据,对数据源进行了业务深层分析,构建了基于销售的主题数据仓库,保证了数据挖掘的有效性,同时用概率代替置信度进行参数设置,并引入关联规则"重要性"参数作为新的衡量标准,分析规则的有趣性,以筛选出更有价值的关联规则.将研究结果应用于某制造业产品销售实例,进行了基于关联规则的产品序列购买模式研究,得到了有效的产品销售关联规则,支持了市场决策.  相似文献   

12.
张争龙 《科学技术与工程》2013,13(19):5687-5691
针对实际交易数据库中,不同项目的重要性和出现概率各不相同的两个问题,提出一种基于等价类和多最小支持度的加权关联规则算法,从而挖掘出那些覆盖较少数据但却有意义、用户可能更感兴趣的关联规则。算法按照项目的最小支持度升序对交易记录进行等价类划分,然后按照项目的最小支持度降序依次求出每一等价类内的加权频繁项集。算法采用垂直数据库的数据表示形式,挖掘过程中避免了对数据库的重复扫描。对比实验结果证明,改进算法具有良好的挖掘性能。  相似文献   

13.
定量关联规则的挖掘   总被引:2,自引:0,他引:2  
介绍在关系数据库中包含定量和范围属性关联规则的挖掘问题,给出一些定义和方法,引人局部完备性来度量由于划分而引起大量信息的丢失程序,决定是否划分一个定量属性及划分数。  相似文献   

14.
随着数据库规模的日益增大,关联规则挖掘需要在挖掘效率、可用性、隐私性及精确性等方面得到提升,需要对传统的关联规则挖掘算法进行更新和改进。在传统的Apriori算法基础上,提出了一种新的在关系数据库中挖掘关联规则的算法。该算法只需扫描一次数据库即可得到频繁项集,并通过非频繁项集来减少候选项集的生成,从而提高了算法的运算效率;此外,该算法将包含敏感数据事务做相关的处理,以达到隐藏包含敏感数据的关联规则。理论分析和实验结果表明,新算法不仅提高了关联规则挖掘的效率,而且还达到了隐藏包含敏感规则的目的。  相似文献   

15.
探索有约束限制的频繁模式的挖掘问题,目的是要建立一个基本框架,通过构造一种新的数据结构--约束树,解决了确定一个项集的最小约束值的关键问题.在此基础上进一步提出了一种有约束限制的模式增长算法,并进行了初步的实验验证.实验结果表明,新的算法比以前类似算法在性能上有显著提高.  相似文献   

16.
通过给定的最小支持率和最小信任度来挖掘语言值关联规则往往会得到很多规则,因此用户很难获得真正关注的语言值关联规则.本文提出一种挖掘典型语言值关联规则的算法,此算法将挖掘得到的语言值关联规则按照相同的后件进行分组,然后对每个分组中的语言值关联规则根据规则之间的不相似性进行聚类.最后从每个类中挑选出代表类原型的语言值关联规则作为典型的语言值关联规则.典型的语言值关联规则是语言值关联规则集合中最具有代表意义的规则.  相似文献   

17.
基于文本库的完全加权词间关联规则挖掘算法   总被引:11,自引:0,他引:11  
提出了基于文本数据库的完全加权词间关联规则挖掘算法,给出了与其相关的定理及其证明过程。该算法采用三种剪枝策略,候选项集数量和挖掘时间明显减少,提高了挖掘效率。实验结果表明该算法的有效性,和现有算法比较,挖掘效率确实得到改善和提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号