首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
一种非线性自适应逆噪声控制器设计及其仿真   总被引:2,自引:2,他引:2  
基于模糊神经网络算法研究了非线性系统的噪声消除问题,设计了一类非线性自适应逆噪声消除控制器。该文利用模糊神经网络融合算法所具有的对任意函数的精确逼近性,对非线性系统进行建模和逆建模,从而为非线性自适应逆噪声控制器的有效性提供了保障。最后将所设计的控制器用于仿真实例,研究表明该噪声控制器能有效地消除非线性被控对象的噪声污染。说明了该方法的可行性和有效性。  相似文献   

2.
李明  杨承  杨成梧 《系统仿真学报》2007,19(21):4973-4975,4980
现在非线性自适应逆控制系统中,由于对象模型和逆控制器均采用非线性自适应滤波器,自适应过程需要同时训练至少两个串联的非线性自适应滤波器,从而造成自适应学习过程过于复杂。利用一组自适应LMS滤波器建立非线性对象的T-S模糊模型,它为逆控制器的学习提供了准确的解析的对象模型Jacobian信息,从而有效简化了自适应逆控制学习过程。仿真结果表明,无论是离线建模还是在线建模,该非线性自适应逆控制方法均能取得理想的控制效果。  相似文献   

3.
根据生物神经元的机能,提出了一种具有动态激励函数的新型神经元模型,由此构成的神经网络(DAFNN)应用在非线性自适应逆控制中时只需要确定隐层神经元个数,从而克服了用NARX回归神经网络时需确定输入和输出延时阶数及隐层神经元个数等多个参数的不足。通过对单输入单输出(SISO)及多输入多输出(MIMO)非线性系统的自适应逆控制仿真研究,证实了DAFNN是一种很好的非线性系统建模和控制工具。  相似文献   

4.
在模型参考自适应控制中,以往消除扰动的方法是将系统输出和干扰同时反馈来提高系统性能和消除干扰,两者只能折中实现。针对此问题,结合自适应逆控制理论和超稳定理论,提出了一种克服随机扰动的离散MRAC设计方法。本方法引入自适应逆模型来消除系统扰动,将对象性能和扰动控制分开单独进行处理,可分别提高各自的性能。仿真实验证实了方法的可行性。  相似文献   

5.
将模糊控制规则归结为控制对象的逆动力学过程模糊辨识问题,提出了一种基于逆动力学过程模糊规则模型的控制算法,通过控制对象逆动力学过程模糊规则模型离线辨识,直接产生形成与控制对象运动规律相适应的初始控制规则,并根据对象逆动力学过程模糊规则模型在线辨识结果,对控制规则进行在线调整.仿真结果表明,所设计的模糊控制器具有良好的控制效果与适应性.  相似文献   

6.
一种时变非线性系统的自适应逆控制仿真   总被引:3,自引:2,他引:3  
对一种非线性时变系统提出了基于神经网络的自适应逆控制方案。该方案中用两个动态神经网络分别作为模型辨识器和自适应逆控制器,详细推导了在线训练自适应逆控制器的BPTM(backpropagationthroughmodel)和RTRL(realtimerecursivelearning)算法。根据大幅面喷墨打印机的结构特点,建立了打印头车架系统的时变非线性动力学模型作为仿真对象,在Matlab/Simulink平台下进行了算法仿真验证。结果表明了该方案收敛快,能有效控制该时变非线性对象。  相似文献   

7.
论述了基于伪控制补偿解决自适应控制中作动器饱和问题的方法。基本控制律采用非线性动态逆方法设计,神经网络用于对逆误差进行重构。伪控制补偿消除作动器和自适应单元之间的交互影响。通过在超机动飞行控制的应用仿真表明,该控制方案弥补了动态逆要求精确数学模型的缺点,消除了作动器饱和对自适应单元的影响,提高了整个控制系统的鲁棒性。  相似文献   

8.
针对传统的小脑模型,提出了一种广义模糊小脑模型神经网络(GFCMAC)。它采用模糊隶属度函数作为接收域函数,可以获得较常规CMAC连续性强且有解析微分的复杂函数近似,具有计算量少,学习效率高等优点。研究了GFCMAC接收域函数的映射方法、隶属度函数及其参数的选取规律和学习算法。结合强化学习,提出了一种基于GFCAMC的强化学习算法,讨论了其实现过程。应用于船舶航向控制的仿真结果表明,在有各种风浪干扰下,船舶航向跟踪快且操舵动作合理,适合船舶转向控制要求。  相似文献   

9.
基于小波神经网络的自适应逆控制及其应用   总被引:2,自引:0,他引:2  
神经网络控制特别适用于具有非线性和不确定性因素的系统。采用小波神经网络(WNN)对飞行仿真转台的直流伺服系统进行实时辨识,得到其逆模型。然后将这一训练后的网络作为前馈控制器与常规反馈控制器结合构成并行自适应逆控制器,控制转台跟踪指定的速度和位置轨线。仿真结果表明该方法的有效性。  相似文献   

10.
基于CMAC的位置伺服系统神经元离散滑模控制   总被引:1,自引:0,他引:1  
针对数控机床位置伺服系统参数不确定及存在外界干扰的特点,将小脑模型关节控制器(CMAC)与滑模控制相结合,设计了基于CMAC的神经元离散滑模制系统及其控制算法.仿真结果表明,该控制方法不但大大降低了普通滑模变结构控制中的抖振,而且具有良好的动静态特性及较强的鲁棒性.  相似文献   

11.
基于演化神经网络的飞机自动着陆自适应逆设计   总被引:2,自引:0,他引:2  
应用基于演化神经网络的自适应逆方法对飞机纵向自动着陆控制系统进行了设计与研究。首先,提出了逆控制器的结构,并将演化神经网络用于自适应逆控制的学习过程。然后用神经网络自适应逆控制方法对飞机自动着陆系统进行设计,最后,对所设计的控制系统做了数字仿真研究。结果表明,所设计的自动着陆控制系统具有良好的可行性和鲁棒性。  相似文献   

12.
李晖  郭晨  李晓方 《系统仿真学报》2004,16(2):326-328,355
根据船舶横摇运动的特点,本文提出以伪随机二元序列信号(PRBS)作为波倾角仿真输入信号,将逆模式小波神经网络自适应控制方法应用于船舶减摇鳍控制系统,取得了良好的减摇效果。仿真实验表明此方法能够克服传统PID控制适应性差的缺点,具有较好的容错性和较强的适应非线性的能力。  相似文献   

13.
基于RBF网络非线性系统逆控制的一种设计方案   总被引:5,自引:0,他引:5  
基于逆动力学控制的思想,提出一种RBF神经网络逆控制与PID控制相结合的在线自学习控制方案。辨识器采用RBF神经网络结构和最近邻聚类算法,实现了对系统逆动力学模型的动态辨识。并将辨识模型作为控制器模型,与被控对象串联,构成一个动态伪线性对象,从而使非线性对象的控制问题转换为线性对象的控制问题。仿真实验证明该控制策略不仅能使系统具有良好的动态跟踪性能和抗干扰能力,而且具有较强的鲁棒性。  相似文献   

14.
基于神经网络实现的交叉口多相位模糊逻辑控制   总被引:7,自引:1,他引:7  
针对城市交叉口交通流的分布特点,给出了一种自适应交叉口多相位控制算法,考虑相邻车道上的车辆排队长度,利用多层BP神经网络实现了道路交叉口多相位模糊控制.仿真结果表明,文章所设计的模糊神经网络控制器能有效地减少单交叉口平均车辆延误,具有较强的学习和泛化能力,为实现交通系统智能控制提供了一条新途径.  相似文献   

15.
运用RBF神经网络结构和最近邻聚类算法,对导弹系统逆动力学系统进行动态模型辨识,并以辨识模型为控制器与BTT导弹控制系统串联构成一个动态伪线性系统,进而应用逆系统方法设计了一种用于解决BTT导弹非线性控制问题的经典控制与神经网络在线自学习相结合的控制方案,实现了导弹三通道的线性化控制和输出的渐近无差跟踪.仿真结果表明,该方案可依据设计指标的要求,实现对BTT导弹的非线性控制,且具有较强的鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号