首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
利用分子反应静力学的基本原理,确定了LiX(X=F,Cl,Br)等分子的X1∑+态的合理离解极限;使用密度泛函理论(DFT)B3P86结合6-311G(3DF,3PD)基组对LiX(X=F,Cl,Br)等分子基态进行了单点能扫描计算,并用最小二乘法拟合修正的Murrell-Sorbie函数,计算出它们光谱数据(ωe、ωeχe、Be、αe、De),结果表明修正的Murrell-Sorbie函数与实验光谱数据吻合较好,这表明修正的Murrell-Sorbie函数更能精确地描述LiX(X=F,Cl,Br)等分子基态的势能函数。  相似文献   

2.
运用Gaussian 94程序 ,由从头计算方法计算了基态SiC(X1Σ )分子的平衡结构和离解能 ,利用单点计算的结果 ,采用Murrell Sorbie函数形式 ,拟合出了SiC分子的分析势能函数 ,并计算出SiC分子的光谱常数ωe,ωeχe,Be,αe的值 .  相似文献   

3.
运用Gaussian03程序,使用密度泛函(B3P86)方法,对O原子采用6-311+G*基组,对Ni原子采用收缩价基组LANL2DZ计算了NiO分子基态(X3∑-)的平衡结构和离解能,利用单点能计算的结果,采用正规方程组拟合Murrell-Sorbie函数,得出NiO分子的基态分析势能函数,并且计算出NiO分子的光谱常数ωe、ωeχe、Be和αe的值.  相似文献   

4.
运用Gaussian03程序,使用密度泛函(B3P86)方法,对O原子采用6-311+G*基组,对Ni原子采用收缩价基组LANL2DZ计算了NiO分子基态(X3∑-)的平衡结构和离解能,利用单点能计算的结果,采用正规方程组拟合Murrell-Sorbie函数,得出NiO分子的基态分析势能函数,并且计算出NiO分子的光谱常数ωe、ωeχe、Be和αe的值.  相似文献   

5.
根据群论和原子分子反应静力学原理,导出了BC分子(X4∑-)和BC-离子(X3Π)的合理离解极限,采用密度泛函方法(B3LYP)和二次组态相互作用方法(QCISD(T))优化计算了BC分子(X4∑-)和BC-离子(X3Π)的平衡结构、振动频率和离解能.在计算出来的一系列单点势能基础上,采用最小二乘法拟合Murrell-Sorbie函数得到相应的解析势能函数,并利用解析势能函数与光谱数据的关系,计算了BC分子(X4∑-)和BC-离子(X3Π)的光谱数据(Be,ae,ωe和ωeχe),计算结果与实验数据符合得相当好.  相似文献   

6.
运用QCISD,QCISD(T),CCSD,CCSD(T)等方法,6-311G,6-311++G(d,p),6-311G(df),6-311++G(3df,3pd),aug-cc-pvdz,aug-cc-pvtz等基组对MgS基态X1Σ+的平衡结构进行优化计算.得出运用CCSD/6-311G(df)方法的结果与实验值最接近;然后用此方法对MgS基态X1Σ+进行谐振频率计算,谐振频率为ωe=537.962 4cm-1,并用最小二乘法把扫描计算的单点能拟合为Murrell-Sorbie函数,由势能函数参数计算与MgS基态X1Σ+相对应的光谱常数,结果与实验数据较为一致.运用CCSD/6-311G方法计算了MgS2(X1 A1)基态的平衡结构与光谱常数.这些数据为MgS团簇的应用研究提供了理论依据.  相似文献   

7.
根据群论及原子分子反应静力学原理,推导了SeH(Se2H)分子基态(X2∏)与SeH-离子基态(X1∑)的电子态及相应的离解极限.采用量子力学从头算方法,运用二次组态相互作用QCISD(T)和电子相关单双耦合簇CCSD(T)方法及6-311++G(3df,3pd)基组,标准的Mur-rell-Sorbie函数及修正的Murrell-Sorbie+c6函数,对SeH(Se2H)分子基态(X2Π)与SeH-离子基态(X1∑)的平衡结构和谐振频率进行了几何优化计算.由作者导出的相应光谱数据(ωe,ωeχe,Be,eα)与实验光谱数据吻合很好.表明SeH(Se2H)分子基态(X2∏)与SeH-离子基态(X1∑)的势能函数可用修正的Murrell-Sorbie+c6函数予以表示.  相似文献   

8.
利用分子反应静力学的基本原理,确定了HX(X=F,Cl,Br)等分子的X1∑ 态的合理离解极限;使用二次组态相互作用方法QCISD(T)并选用6-311G G(3df,3pd)基组,对HX(X=F,Cl,Br)等分子基态进行了单点能扫描计算,并用最小二乘法拟合的Murrell-Sorbie函数和修正的Murrell-Sorbie函数计算它们光谱数据(ωe、ωeχe、Be、αe、De),结果表明修正的Murrell-Sorbie函数计算值与实验光谱数据吻合较好.这表明修正的Murrell-Sorbie函数更能精确的描述HX(X=F,Cl,Br)等分子基态的势能函数.  相似文献   

9.
采用6-311 G**基组、B3LYP方法对SeN<n(n=0, 1, 2,--1)分子离子基态进行了结构优化和频率计算,用TDB3LYP/6--311 G"含时方法对SeN分子低激发态a(4Ⅱi)、A 2Ⅱ进行了计算,得到SeNn(n=0, 1, 2,--1)分子离子基态和SeN分子激发态a(4Ⅱi)、A 2Ⅱ的平衡几何结构、电子状态、谐振频率、偶极矩、离解能De等相关性质,并在计算出来的一系列单点势能基础上,用正规方程组拟合Murrell-Sorbie(M-S)势能函数,得到相应态的解析势能函数,由此计算对应的光谱参数(Be、αe、ωe、和ωeXe)和力学性质.理论计算值与相关文献值吻合较好,说明用B3LYP(TDB3LYP)/6-311 G**方法计算SeNn(n=0, 1, 2,-1)分子离子基态和SeN分子激发态微观结构性质是可行的.计算结果表明Se Nn(n=0, 1, 2,-1)分子离子基态是可稳定存在的,其稳定性次序为SeN-SeNSeN SeN2 .  相似文献   

10.
使用SAC/SAC-CI方法,利用D95 **、6-311 g**以及cc-PVTZ等基组,对H2分子的基态X1 ∑ g、第二激发态B1∑u u及第三简并激发态C1∏u的平衡结构和谐振频率进行了优化计算.通过对三个基组的计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(Group Sum of Operators)方法对基态X1∑ g、SAC-CI的GSUM方法对激发态B1∑ u和C1∏u进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态X1∑ g、第二激发态B1∑ u和第三简并激发态C1∏u相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据基本一致.  相似文献   

11.
利用Gaussian09程序包中单双取代的耦合簇理论(CCSD)对LiX-(X=H,F,Cl)分子离子基态进行了几何优化和频率计算,进一步进行了单点能扫描计算.用最小二乘法拟合得到了LiX-(X=H,F,Cl)分子离子基态的Murrell-Sorbie势能函数,计算得到了LiX-(X=H,F,Cl)分子离子基态的力常量.  相似文献   

12.
运用多种方法和多种基组,对SeC基态X1Σ+的平衡结构进行优化计算.计算结果与文献实验值进行比较,得出B3LYP/6-311++G(3df)基组为最优基组;然后对SeC基态X1Σ+进行谐振频率计算,得到谐振频率ωe=1 064.54 cm-1,并进行单点能扫描计算,用最小二乘法拟合为Murrell-Sorbie函数,由此势能函数参数计算与SeC基态X1Σ+相对应的光谱常数,结果与文献实验数据一致.  相似文献   

13.
运用Gaussian03程序,使用密度泛函(B3P86)方法,对O原子采用6-311+G*基组,对Ni原子采用收缩价基组LANL2DZ计算了NiO分子基态(X3Σ-)的平衡结构和离解能,利用单点能计算的结果,采用正规方程组拟合Murrell-Sorbie函数,得出NiO分子的基态分析势能函数,并且计算出NiO分子的光谱常数ωe、ωeχe、Be和αe的值。  相似文献   

14.
运用Gaussian03程序,使用密度泛函(B3P86)方法,对O原子采用6-311+G*基组,对Ni原子采用收缩价基组LANL2DZ计算了NiO分子基态(X3Σ-)的平衡结构和离解能,利用单点能计算的结果,采用正规方程组拟合Murrell-Sorbie函数,得出NiO分子的基态分析势能函数,并且计算出NiO分子的光谱常数ωe、ωeχe、Be和αe的值。  相似文献   

15.
根据群论及原子分子反应静力学原理,推导了SeH(Se2H)分子基态(X2∏)与SeH-离子基态(X1∑)的电子态及相应的离解极限.采用量子力学从头算方法,运用二次组态相互作用QCISD(T)和电子相关单双耦合簇CCSD(T)方法及6311++G(3df,3pd)基组,标准的MurrellSorbie函数及修正的MurrellSorbie+c6函数,对SeH(Se2H)分子基态(X2Π)与SeH-离子基态(X1∑)的平衡结构和谐振频率进行了几何优化计算.由作者导出的相应光谱数据(ωe,ωeχe,  相似文献   

16.
运用多种方法和基组对AsP基态X1Σ+的平衡结构进行优化计算,其中B3LYP/6-311++G(3df,3pd)的计算结果与实验值一致,得出此方法为最优方法.然后选用此方法对其进行谐振频率计算,得到谐振频率ωe=629.820 3 cm-1,并用最小二乘法把扫描的单点能拟合为Murrell-Sorbie函数,由势能函数参数计算与AsP基态X1Σ1相对应的光谱常数,结果与实验数据较为一致.  相似文献   

17.
运用多种方法和基组对AsP基态X1Σ+的平衡结构进行优化计算,其中B3LYP/6-311++G(3df,3pd)的计算结果与实验值一致,得出此方法为最优方法.然后选用此方法对其进行谐振频率计算,得到谐振频率ωe=629.820 3 cm-1,并用最小二乘法把扫描的单点能拟合为Murrell-Sorbie函数,由势能函数参数计算与AsP基态X1Σ1相对应的光谱常数,结果与实验数据较为一致.  相似文献   

18.
采用密度泛函理论的B3LYP/6-311+G(3df)方法优化计算了AlN(X3Π)分子和AlN-(X2∑+)离子基态的平衡结构、振动频率和离解能.根据原子分子反应静力学原理,导出了AlN(X3Π)分子和AlN-(X2∑+)离子的合理离解极限,利用Murrell-Sorbie势能函数和理论计算结果得到基态相应的解析势能函数,并由光谱数据和解析势能函数的关系计算了基态的光谱数据(eα,Be,ωe和ωeχe),计算结果与实验数据符合得相当好.  相似文献   

19.
运用Gaussian03程序,使用从头算方法计算了TiC分子基态(X3Σ+)的平衡结构和离解能,利用单点能计算的结果,采用正规方程组拟合Murrell-Sorbie函数,得出TiC分子的基态分析势能函数,并且计算出TiC分子的光谱常数ωe、ωeχe、Be和αe的值。  相似文献   

20.
采用密度泛函方法(B3LYP)和二次组态相互作用方法(QCISD(T))优化计算了OT,DT分子基态(X2Π)的平衡结构、振动频率和离解能.根据原子分子反应静力学原理,导出了OT,DT分子基态(X2Π)的合理离解极限,采用最小二乘法拟合Murrell-Sorbie函数得到了相应的势能函数和与该基态相对应的光谱常数(Be,eα,eω和ωeχe),计算结果与实验数据符合得相当好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号