首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
核小体是构成真核生物染色质的基本结构单位,体内研究核小体及染色质结构受到诸多因素限制,体外重构核小体结构是研究与核小体及染色质结构相关课题的一种重要的方法手段.实验将ES1,CS1以及601DNA序列克隆到载体中,通过PCR大量扩增回收得到目的DNA条带,表达纯化了4种组蛋白且装配成组蛋白八聚体,在盐透析的条件下组装形成核小体结构,利用EB染色以及Biotin标记的方法分析检测了形成核小体的效率.结果显示,在盐透析的条件下,可以有效的组装形成核小体结构,而且随着组蛋白八聚体与DNA的比例增加,核小体的形成效率显著提高.本实验为核小体定位、染色质重塑及组蛋白变体等表观遗传学以及结构生物学领域的研究奠定一定的基础.  相似文献   

2.
核小体是构成真核生物染色质的基本结构单位,体内研究核小体及染色质结构受到诸多因素限制,体外重构核小体结构是研究与核小体及染色质结构相关课题的一种重要的方法手段.实验将ES1,CS1以及601DNA序列克隆到载体中,通过PCR大量扩增回收得到目的DNA条带,表达纯化了4种组蛋白且装配成组蛋白八聚体,在盐透析的条件下组装形成核小体结构,利用EB染色以及Biotin标记的方法分析检测了形成核小体的效率.结果显示,在盐透析的条件下,可以有效的组装形成核小体结构,而且随着组蛋白八聚体与DNA的比例增加,核小体的形成效率显著提高.本实验为核小体定位、染色质重塑及组蛋白变体等表观遗传学以及结构生物学领域的研究奠定一定的基础.  相似文献   

3.
陈文辉 《江西科学》2012,30(1):50-52,82
在真核细胞中,核小体是组成染色质的基本结构单位,是由DNA紧密缠绕在组蛋白八聚体上所形成的一个复合体结构。而DNA与组蛋白的结合并不是固定不变的,没有核小体结合的DNA区域易于各种调节蛋白的接近与结合。因此人们怀疑核小体的定位与基因的转录调节之间存在某种内在联系。对现行的核小体定位的检测方法进行了归类,并对其优缺点进行了分析整理。对更深入的探索核小体定位检测方法的应用有一定意义。  相似文献   

4.
<正>真核生物中基因组DNA是以染色质形式存在的。核小体是构成染色质的基本单位。核小体及高级染色质结构的形成一方面有效储存和保护了DNA序列所蕴含的遗传信息;另一方面,作为基因组DNA的具体存在方式,染色质结构成为各种需要接触DNA的细胞过程(如转录、复制、损伤修复等)的天然障碍,使染色质成为了一个重要的遗传信息表达  相似文献   

5.
核小体是染色质的基本结构单位,核小体组蛋白N末端尾部可以发生甲基化、乙酰化等多种共价修饰.组蛋白密码假设多种组蛋白修饰以组合方式发挥作用.自组蛋白密码假设被提出后,组蛋白修饰组合模式成为表观遗传学领域的重要研究内容.在染色质免疫沉淀基因芯片和免疫沉淀高通量测序等相关实验数据的基础上,多种算法被用于研究组蛋白修饰的组合.文章介绍了组蛋白修饰的发生、位点、相关修饰酶以及生物学功能,对组蛋白修饰组合以及与基因表达关系的研究进行了总结,同时对组蛋白修饰组合模式一些适用的研究方法做了概述和分析.  相似文献   

6.
应用透射电镜术和生化抽提扫描电镜术显示,华美游仆虫大核核膜表面形成孔状结构,并有相当数量的附着物;小核核膜表面也有孔状结构,但附着物较少.此外,非分裂期大核染色质凝缩排列形成染色质团,染色质团由染色质颗粒构成,各个染色质颗粒含有许多均质的染色质小体;大核DNA合成期间,大核复制带区的染色质团分解成染色质小体.据所得结果认为,染色质小体是构成游仆虫大核的基本结构单元;大、小核形态上的差异与其在无性生殖期间核、质间的功能活动及物质联系有关.  相似文献   

7.
前言 核小体是染色质的基本单位, 由DNA和核心组蛋白八聚体 (H2A、H2B、H3和H4各两分子)组成,并由不同的蛋白质〔包括组蛋白H1和高迁移率组(HMG)蛋白〕组成高级结构.  相似文献   

8.
有机体的所有信息全都贮存于DNA中,DNA与组蛋白及非组蛋白相复合而构成称为染色质的遗传装置。不论是组蛋白还是非组蛋白,都经历着多种合成后的共价修饰作用,一磷酸化、工酰化、ADP—核糖基化和甲基化。这些修饰作用可改变染色质的结构组织,也可改变它的模板活性。  相似文献   

9.
组蛋白H3第36位赖氨酸的甲基化修饰在染色质上含量丰富,与活跃转录以及DNA损伤修复等重要生理过程相关.H3K36位点可以被一甲基化、二甲基化和三甲基化3种形式修饰,目前已知的负责组蛋白H3K36三甲基化修饰的人源蛋白是SETD2,负责组蛋白H3K36二甲基化修饰的酶包含NSD1、NSD2和NSD3和ASH1L共4名成员.这些H3K36甲基转移酶都具有非常特异的H3K36位点选择性,因此,对调控体内H3K36甲基化修饰的水平和分布十分重要.此外,它们的表达异常与人类的多种疾病相关.因此,解析组蛋白H3K36甲基转移酶识别并修饰组蛋白底物的分子机制,对揭示这些酶参与的表观遗传调控机制及其在体内的生理功能都具有十分重要的意义.早期的研究使得人们对组蛋白H3K36甲基转移酶催化底物的机制有了较深入的认识,但是由于解析的修饰酶与底物复合物的结构较少,对这些酶特异识别组蛋白底物分子机制的认识尚有很多不足.近年来,随着冷冻电镜技术的应用,H3K36甲基转移酶与核小体底物的复合物结构相继取得了突破,极大地推进了人们对这些酶识别并催化组蛋白底物分子机制的认识.本文以这几个组蛋白H3K36甲基转移酶为主要目标,对其分子机制的最新进展进行介绍总结.   相似文献   

10.
Hir/Hira基因产物是组蛋白基因表达的一种负调节因子,其在果蝇发育过程中的作用还没有得到确认.本研究将果蝇Hira基因(dHira)的cDNA克隆到载体UAsP中,运用UAS—Gal4系统使其在果蝇早期胚胎中大量表达.结果发现在胚胎发育早期,无论是在头部还是在全胚胎过量表达Hira,都引起果蝇胚胎大量死亡,而且随着转基因拷贝数的增加,胚胎的死亡率也显著增加,说明Hira过量表达对果蝇胚胎发育产生严重影响.由于Hira基因产物与核小体的组装、染色质结构等的调节有关,因此推测Hira过量表达可能是通过对组蛋白的抑制对果蝇胚胎发育造成影响的.  相似文献   

11.
核小体是染色质的基本结构单位,核小体组蛋白尾部可以发生甲基化、乙酰化等多种共价修饰.以含有组蛋白修饰酶的修饰数据库为基础,借助网络研究了一些修饰之间以及与修饰酶之间的关联关系,同时从相关修饰酶及其复合物的角度分析了这些关联.结果显示部分修饰之间或与相关修饰酶之间存在直接的关联关系.包含修饰酶的酶复合物可以通过自身的蛋白结构域与甲基化或者乙酰化修饰结合,进一步利用自身的修饰酶亚基催化其它组蛋白修饰,从而使得两种组蛋白修饰之间建立关联.  相似文献   

12.
组蛋白甲基化修饰在真核生物的表观遗传调控中具有重要作用.SET结构域蛋白质可以特异地甲基化修饰组蛋白的赖氨酸残基,进而促进或抑制基因的表达.有关SET结构域蛋白质和组蛋白赖氨酸甲基化的研究为深入了解染色质结构和功能提供了重要信息.文中综述了组蛋白赖氨酸甲基化修饰在植物中的最新进展,探讨了SET结构域蛋白质在植物生长发育调控中的重要作用.  相似文献   

13.
高迁移率族蛋白(High Mobility Group protein,HMG)和组蛋白H1结合染色质DNA,在维持染色质的高级结构、基因组基因表达调控以及DNA修复等方面发挥重要作用。嗜热四膜虫细胞含有一个体细胞系的大核和一个生殖系的小核,小核特异定位的高迁移率蛋白HmgB3或组蛋白Mlh1的缺失并未引起生长期细胞的异常表型。本研究通过同源重组的方法构建了HMGB3和MLH1的双敲除细胞突变株ΔHMGB3ΔMLH1。突变细胞在营养生长期能够正常增殖,但对甲基磺酸甲酯较为敏感。缺对PCR检测发现突变株中小核染色体有缺失现象,并且不能完成有性生殖。有性生殖过程中,减数分裂后的小核异常降解。结果表明高迁移率蛋白HmgB3和小核组蛋白Mlh1共同维持了四膜虫小核的稳定性,并可能具有功能上的冗余性。  相似文献   

14.
真核细胞中承载基因的染色质是一种非常精密而严谨的结构.这种DNA高度压缩、复杂的染色质结构影响了转录因子和RNA聚合醇Ⅱ等基本转录机器结合到相应的DNA位点上.因此基因要转录激活就必须借助于转录辅助复合体消除染色质的结构抑.转录辅助复合体可以分为两类一类主要是利用水解ATP来改变核小体相对于DNA序列的缠绕方式及排列;另一类是通过对核心组蛋白进行共价修饰来改变核小体和DNA的结合能力.SAGA复合体属于后者,对红蛋白具有乙酰化的作用.酵母中的SAGA复合体是一个分子量为180万道尔顿的多功能蛋白复合体,本文将着重介绍SAGA复合体成分蛋白在真核生物基因转录起始中的作用.  相似文献   

15.
绿草履虫P.bursaria是在接有产气杆菌Aerobacter aerogems的无菌稻草提取液中进行克隆培养后取得的。在非离子去污剂NP-40(含有二价阳离子Ca~(2 ),Mg~(2 ))的溶液中裂解细胞,经蔗糖梯度离心分离、提纯细胞大核,并制备染色质,测定其中组蛋白、非组蛋白、DNA和RNA的相对含量。用稀酸抽提绿草履虫大核和大核染色质,得到的酸溶性蛋白(即组蛋白),经PAGE、SDS-PAGE、PAGIF和氨基酸分析等方法测定。得到的结果是:绿草履虫大核染色质中DNA:RNA:组蛋白:非组蛋白=1:0.02:1.30:0.59;组蛋白占染色质蛋白质的68.8%;大核和大核染色质的酸溶性蛋白是相同的,都具有相当于高等动物的全组蛋白的五条组蛋白带,只在其相对含量及电泳迁移率上,与高等动物的全组蛋白略有差别;由16种氨基酸组成,20%是酸性氨基酸,不存在色氨酸和半胱氨酸;五条蛋白带的分子量为1.1000~21000道尔顿,也类似于哺乳动物细胞组蛋白;这是一类碱性很弱的蛋白质,等电点为pH8.02~9.4;碱性氨基酸和酸性氨基酸的比为1.03:1,这一点却更接近酵母全组蛋白。  相似文献   

16.
绿草履虫P.bursaria是在接有产气杆菌Aerobacter aerogenes的无菌稻草提取液中进行克隆培养后取得的.在非离子去污剂NP-40(含有二价阳离子Ca~(2+),Mg~(2+))的溶液中裂解细胞,经蔗糖梯度离心分离、提纯细胞大核,并制备染色质,测定其中组蛋白、非组蛋白、DNA和RNA的相对含量.用稀酸抽提绿草履虫大核和大核染色质,得到的酸溶性蛋白(即组蛋白),经PAGE、SDS-PAGE、PAGIF和氨基酸分析等方法测定.得到的结果是:绿草履虫大核染色质中DNA:RNA∶组蛋白∶非组蛋白=1∶0.02∶1.30∶0.59;组蛋白占染色质蛋白质的68.8%;大核和大核染色质的酸溶性蛋白是相同的,都具有相当于高等动物的全组蛋白的五条组蛋白带,只在其相对含量及电泳迁移率上,与高等动物的全组蛋白略有差别;由16种氨基酸组成,20%是酸性氨基酸,不存在色氨酸和半胱氨酸;五条蛋白带的分子量为11000~21000道尔顿,也类似于哺乳动物细胞组蛋白;这是一类碱性很弱的蛋白质,等电点为pH 8.02~9.4;碱性氨基酸和酸性氨基酸的比为1.03∶1,这一点却更接近酵母全组蛋白.  相似文献   

17.
以大肠杆菌基因组为研究对象,基于体外组装的核小体序列中k-mers频数信息,采用多样性增量结合二次判别算法对核心DNA和连接DNA进行分类预测,整体准确率和相关系数分别达到83.08%和0.619.对大肠杆菌、酵母和人类基因组中核小体定位序列与缺失序列中偏好的k-mers进行了比较,结果表明核小体缺失序列更为保守.  相似文献   

18.
核小体是真核生物染色质的基本单位。核小体的精确定位影响了基因组序列对结合蛋白的可及性、转录、遗传复制和重组。了解核小体在基因组的准确位置对理解真核生物的生命活动过程有重要作用。本文基于核小体的序列和结构特征及统计物理理论,用统计物理模型预测了核小体的定位。利用统计物理和信息论原理计算了酿酒酵母(S.cerevisiae)、人类(H.sapiens)、秀丽隐杆线虫(C.elegans)和黑腹果蝇(D.melanogaster)数据集中序列片段的DNA局部结构的总能量,基于核小体序列与非核小体序列的总能量差异进行分类,通过10倍交叉验证进行了性能评估。结果显示该模型具有较好的识别效能。  相似文献   

19.
表观遗传包括通过DNA甲基化、组蛋白修饰、染色质重塑和RNA干扰等,通过这些机制干扰了正常基因的功能。越来越多的研究表明,DNA甲基化和组蛋白修饰异常,在多种肿瘤的发生中起重要作用。本文对表观遗传的分子机制,和同肿瘤发生的关系,以及肿瘤的表观治疗策略作了详细的综述。  相似文献   

20.
真核细胞染色质主要是由DNA和蛋白质两类高分子物质所组成。构成染色质的蛋白质包括组蛋白和非组蛋白,各种细胞中DNA含量约与蛋白质的含量相等,非组蛋白含量则变动较大。 1974年OIins夫妇发表了染色质呈绳珠形状的电镜相片。与此同时。R·D,Kornber提  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号