首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
输气管道气动噪声产生机制及其分析方法   总被引:1,自引:1,他引:1  
以输气管道中气体流经阀门时产生的气动噪声为研究对象,采用两种方法获取气动噪声声源:一种是只采用CFD软件进行计算和分析(FW-H法);另一种是采用CFD软件联合声学软件进行仿真计算(BEM法)。建立气动噪声模型,得到气动噪声的产生、传播和衰减规律。结果表明:流场中的压力脉动和速度脉动是输气管道中气动噪声产生的根本原因;输气管道中的阀门噪声源为偶极子声源和四极子声源,在低马赫数下,偶极子声源占主要地位;偶极子声源分布在阀门表面上,四极子声源分布于整个流场中;两种方法均能较好地求解输气管道气动噪声的产生、传播和衰减问题,FW-H法操作简单,计算精度较低,但只能计算声场"远场",而BEM法计算效率高、精度高,能够对声场中任一点的声学量进行求解。  相似文献   

2.
高速列车转向架舱对转向架区域流场与气动噪声影响   总被引:1,自引:0,他引:1  
根据涡声理论和声比拟方法,数值模拟了高速列车转向架简化模型的流场与气动噪声特性,分析了转向架舱对转向架流动与气动噪声性能的影响.结果表明:在单独转向架与转向架位于转向架舱内2种工况下,几何体近壁流场内形成的体偶极子声源为近场四极子噪声的主要声源,转向架表面压力脉动产生的面偶极子声源为声辐射主要声源;与单独转向架相比,转向架舱改变了转向架流动特性与声辐射指向性,削弱了转向架所产生气动噪声的强度,但转向架舱后壁会产生较大气动噪声.  相似文献   

3.
贯流风机气动噪声数值预估   总被引:2,自引:0,他引:2  
通过精细求解二维非定常Reynolds平均的Navier-Stokes方程,数值模拟了贯流风机内部的复杂流场。随后从流场的数值结果中提取出叶片、涡墙和后墙的脉动压力作为声源,进行声场计算。以声学中的Ffowcs Williams-Hawk-ings(FW-H)方程作为出发方程,数值求解贯流风机的噪声场。计算结果表明在贯流风机中,后墙的压力脉动与涡墙的压力脉动是主要的噪声源。该文的数值预估不仅在贯流风机的总体气动性能上与实验测试结果吻合,同时气动噪声场的预估结果也与实验测试结果吻合良好。  相似文献   

4.
平面自由湍射流拟序结构的大涡模拟研究   总被引:2,自引:0,他引:2  
对空间发展的平面不可压缩湍射流拟序结构的非定常演化过程进行了大涡模拟。采用标志物浓度等值线分布示踪平面射流气相流动 ,Reynolds数为 1130 0 ,模拟结果再现了平面射流中 Kelvin- Helm holtz不稳定性的发生以及展向大尺度涡的卷起、合并、破碎过程。捕获到了射流拟序结构剧烈相互作用的“偶极子”和“三极子”现象。在拟序结构的配对过程中 ,大尺度旋涡的尾迹混合形成了流向“发卡”型拟序涡结构。平面射流拟序结构的时空演化过程所呈现出的卡门涡街特征主要集中于初始段的后部和过渡段的前端。数值流场显示结果和染线法的实验结果吻合得很好  相似文献   

5.
为研究埋地天然气管道泄漏声源的特性,运用声比拟法(FW-H)与CFD理论对管道泄漏声场进行仿真模拟,计算泄漏声场气动噪声源的类型与声强信号,为检测和定位泄漏点位置奠定理论基础。结果表明:埋地管道发生泄漏后,管内流体速度分布均匀,管外土壤中泄漏流体的速度变化梯度较大;管道泄漏的主要声源是偶极子与四极子声源,其中偶极子声源集中在管道内壁面,四极子声源集中在管道外的开阔区域;随着埋地管道内压的增加与泄漏口直径的扩大,泄漏声场的声波强度逐渐增大,但泄漏口直径变化所引起的声强增幅程度远小于内压变化所引起的声强变化。  相似文献   

6.
离心风机气动声学分析的一个理论模型和计算方法   总被引:2,自引:1,他引:2  
通过求解具有延迟时间,包含三维流速影响的非齐次波动方程,得到了离心叶轮气动导报学的基本方程,对气动声源的分析表明,在离心风机的气动噪声中,起主要影响作用的是偶极子和四极子声源,而流动过程中产生的涡是最主要的四极子源,提出了一种用于分析离心风机气动噪声的声学模型,即忽略蜗壳进、出口声学软边界的影响,将蜗壳简化为一个封闭的声学硬边界柱壳,并推出柱壳腔体内的格林函数,利用该函数对离心风机内部由旋转叶轮产生的气动声场进行了时域求解并给出了理论解方程,在计算出离心风机内部的三维非稳定流场之后,利用本文模型和理论解方程就可求出与该流场相对应的气动声场。  相似文献   

7.
采用雷诺平均数值模拟方法对空调室外机内部的三维黏性非定常流动进行了计算,获取了用于噪声分析的气动声源。在此基础上,依据Lowson方程对脉动压力产生的气动声场进行了仿真,预测了空调室外机各部位气动声源对声场的贡献,并对锯齿轴流风叶的降噪效果进行了分析。为了识别偶极子声源,对固体壁面处的静压脉动进行了分析。结果表明:静压脉动的相位一致是采用偶极子声源强度进行声源识别的前提条件。室外机噪声数值预测结果与试验在定性上吻合较好,说明噪声数值分析方法具有良好的工程应用价值。  相似文献   

8.
叶尖小翼对轴流风机气动性能及噪声特性影响的数值研究   总被引:1,自引:0,他引:1  
为了控制轴流风机叶顶泄漏流造成的气动损失和噪声,在轴流风机叶片顶部添加了融合式叶尖小翼结构,并对风机的气动性能及噪声特性进行了数值研究。采用大涡模拟结合声类比方程的数值方法,研究了叶尖小翼对轴流风机流场和声场的影响。通过对风机叶尖流场和声场进行分析,对比不同外倾角的融合式叶尖小翼周围的涡场结构以及表面声压脉动,分析了不同外倾角小翼对叶尖泄漏流的控制作用以及叶尖小翼对风机气动性能和噪声特性产生的影响。结果显示:叶尖小翼结构可以有效抑制叶尖泄漏涡以及叶尖分离涡的发展,降低轴流风机的气动噪声,提高轴流风机静压效率;使用20°外倾角的叶尖小翼,风机静压效率提高了1.1%,噪声降低了5.0dB;叶尖泄漏流造成的气动噪声主要是宽频噪声,叶尖小翼可以明显降低轴流风机的宽频噪声;通过优化叶尖小翼的外倾角可以在不损害风机气动性能的同时实现较好的降噪效果。  相似文献   

9.
采用离散涡方法对平面射流流场进行了数值模拟。显示了平面射流中的大尺度涡结构的卷起、旋转和合并过程,模拟结果揭示了平面射流中的大尺度拟序结构的时空演化特征和发展变化规律。得到了定点的瞬时速度和流场的时均速度分布,时均速度场的计算结果和实验值吻合,瞬时速度分布揭示了平面射流拟序结构的非定常、不稳定的非线性特征。  相似文献   

10.
为了研究涡旋射流控制流动分离的物理机理,基于大涡模拟方法对涡旋射流控制下的矩形扩压器流场和射流流向涡结构的生成、发展等动力学演化过程进行了数值研究.结果表明:射流产生的流向涡将主流高动量气流带入分离区,增加了边界层内气流流动方向的动量,使流动分离得到了抑制.射流流场的涡结构主要由射流剪切层涡、马蹄涡、尾涡组成,由于速度梯度大小的变化,使得射流剪切层涡系的结构随着时间推移从涡卷演化为涡环.对于脉冲射流,在低频脉冲下,射流产生的流向涡呈涡卷结构,流动控制效果明显.在高频脉冲下,射流剪切层涡演变成间歇涡环结构,流动控制效果减弱.通过对比脉冲频率和占空比对流动控制的影响发现,占空比为0.5、频率为20Hz的脉冲射流具有较好的流动控制效果.  相似文献   

11.
以中央空调中带导风圈的低压轴流风机为研究对象,对其内部涡流特性和气动噪声展开研究。采用大涡模拟计算了均匀进气情况下半管道式低压轴流风机的三维瞬态流场。计算结果表明叶尖涡是其内流场主要特征,叶尖涡的形成、发展和破碎对气动噪声源的分布有重要影响。提取了主要噪声源处的非定常压力脉动进行频谱分析,显示其叶片尾缘处脱落涡频率特征明显。风机的远场噪声采用LES/FW-H声类比方法进行预测,结果表明低压轴流风机的气动噪声以宽频成分的紊流噪声为主,预测的声压级频谱与实验吻合得较好。  相似文献   

12.
针对冷却模块噪声预测过程中散热器等部件是否可以忽略的问题,首先,建立等效的多孔介质流场模型,采用大涡模拟分析来流湍流及均匀性,并求解风扇周围的湍动能和涡量,通过涡声理论辨识主要噪声源。然后,建立声学边界元模型,对冷却模块的离散及宽频气动噪声进行三维声场预测与声压频谱分析。最后与试验进行对比分析。研究结果表明:散热器等部件对来流湍流及噪声源分布影响显著,在气动噪声计算过程中不可忽略。  相似文献   

13.
为增强燃料与超声速气流的混合,以达到较好的混合效果,利用FLUENT DES方法对1 k Hz激励横向射流对超声速混合中流向涡的影响进行了数值模拟。通过与无激励射流的工况进行对比发现,因大尺度结构的提早形成,激励射流将射流核心中的流向涡对的能量迅速打散,底部涡对迅速扩大并且向上抬升,并夹挤射流核心涡对,最终将之取代,造成流场剧烈变化。对横向射流进行激励有利于增强混合。  相似文献   

14.
以矿用对旋式轴流通风机为研究对象,应用计算流体力学软件FLUENT对通风机气动噪声及三维流场进行数值模拟与分析,研究矿用对旋式轴流通风机气动噪声产生机理及通风机内部三维流场的流动状况;在三维非定常流动条件下,采用大涡模拟湍流模型(LES)进行求解,选取二阶隐式时间推进法来提高计算精度,结果表明:受前后两级叶轮之间所形成的流道不均影响,在同一轴向截面上靠近叶轮壁面位置的噪声值小于叶轮流道中部位置的噪声值,而叶轮流道中部位置的噪声值又小于靠近轮毂壁面位置的噪声值.离通风机气动噪声源(前后两级叶轮)越近,受到的气流压力脉动的影响就越大,则该区域气流的振动也越大,其对应的噪声值就越高;反之,越远离噪声源的区域受到的气流压力脉动的影响就越小,使得该区域的气流的振动越小,其对应的噪声值越低.同时,高压旋转的气流在扩散器区域的分布不再均匀,靠近叶轮壁面及轮毂的动压较低,而通风机流道中部附近的动压较高.研究结果对矿用对旋式轴流通风机的优化设计具有一定的指导意义.  相似文献   

15.
运用Fluent软件中的大涡模型对90°弯管中的非定常湍流场进行了数值模拟,在流场计算的基础之上,采用FW-H方程研究声场行为,得到5个不同截面的声压随时间变化关系图.从模拟结果可知,流场在一定的外界条件下会产生二次涡,这些涡与涡之间的相互融合或分裂产生了一定的声压.进一步给出5个不同截面流场和声场的变化情况,以及不同时刻涡和涡之间的相互作用对声场的影响.针对流场的5个特定区域,在其截面上选取5个监测点,利用FW-H方程进行计算,结果发现声场中声压随时间的增加先达到极大值后迅速趋于平稳.  相似文献   

16.
为降低传统叶型轴流风机的气动噪声,受鸮类翅膀翼型和非光滑边缘结构的启发,以原型轴流风机的中弧线分布为基准,提取具有静音飞行特性的长耳鸮40%翼展截面处的厚度分布,结合长耳鸮翅膀边缘的非光滑结构特征,在仿鸮翼叶片尾缘耦合了正弦型锯齿结构对轴流风机叶片进行仿生重构,并将其应用于降低轴流风机噪声叶片改型设计中。基于轴流风机内部流场的数值计算结果,采用大涡模拟(LES)结合Ffowcs Williams和Hawkings发展的FW-H声类比方法对轴流风机的声场特性进行了数值模拟。研究结果表明:与原型风机相比,仿生耦合叶片风机的整体降噪幅度为2dB,风量提升4.69%。风机内部流场及声场显示:仿生耦合叶片使气流从吸力面向压力面的过渡更为平缓,不仅改善了气流对叶片前缘局部的冲击性,且能减弱叶顶间隙处的泄漏涡强度。此外,仿生耦合叶片产生的紊流边界层及尾迹涡脱落引起的气流脉动和气流不均匀性程度减弱,宽频噪声和离散噪声在中低频范围内均有所降低,因此仿生耦合叶片不仅改善了叶片前缘的局部压力脉动,且能够减小尾缘锯齿处的声源强度,改善叶片尾缘的尾迹涡分布。  相似文献   

17.
提出了通过合成射流控制脉动气动载荷相位来抑制结构物涡激振动的思想.为了验证合成射流对脉动气动载荷的相位控制功能和研究实现合成射流相位控制功能的参数范围,采用CFD软件对有无合成射流控制下,E214翼型周围的二维非定常流场进行了数值模拟,得到了翼型升力系数的时间历程.对有无合成射流控制情况下,气动载荷的时间历程进行快速傅利叶变换.给出了大迎角下无合成射流控制时脉动气动载荷的主频,及判断合成射流能否实现相位控制的方法.应用该方法对一系列数值模拟的结果进行分析判断,得到合成射流能实现相位控制的速度-频率参数范围.结果发现合成射流的相位控制功能受合成射流喷射速度和喷射频率的影响很大.当合成射流喷射频率与无合成射流作用下脉动气动载荷的主频非常接近时,只需较小的控制能量就能实现相位控制.而当合成射流喷射频率偏离无合成射流作用下脉动气动载荷的主频时,则需要较大的控制能量才能实现相位控制.  相似文献   

18.
自吸环空流体式自激振荡脉冲射流性能分析与优化   总被引:2,自引:0,他引:2  
为了充分利用井底水力能量提高钻速,提出自吸环空流体式自激振荡脉冲射流钻井技术。采用大涡模拟与试验研究相结合的方法,分析自吸环空流体式自激振荡脉冲射流的调制机制及射流调制工具的结构参数对射流性能的影响。采用正交试验法进行数值模拟试验,优选射流调制工具的结构参数。结果表明:结构参数对射流性能影响显著,结构合理的吸入式自激振荡射流的性能明显优于非吸入式脉冲射流;射流调制工具出口脉冲射流速度脉动值与破岩深度之间呈显著的线性相关,脉动值越大,射流破岩效果越好。数值计算结果与试验结果吻合良好,表明所用研究方法可行。  相似文献   

19.
采用大涡模拟方法数值模拟了流向和展向椭圆喷嘴的湍流横向射流, 重点研究了其中旋涡结构的产生、发展等动力学演化过程. 结果表明文献中所报道的横向射流基本涡结构, 如反向旋转涡对、前缘涡、后缘涡、悬涡、肾涡、反肾涡等等是分别对应于新发现的横向射流中的基本涡结构——起始于喷嘴的三维拉伸涡环的局部结构, 因此, 在湍流横向射流中真正占主导作用的是拉伸、扭曲、沿展向摆动和沿流向扭动的三维涡环. 研究还发现: 涡环的脱落频率比流场信号分析得到的脉动频率小得多.  相似文献   

20.
针对高速列车的头车进行全尺寸三维模型和流场流域的创建,并通过k-ε湍流模型计算稳态流场;在稳态流场的基础上,采用宽频带噪声模型计算头车表面的气动噪声源;利用大涡模拟(LES)方法计算瞬态流场,进而获取车身外表面的脉动压力;再基于瞬态流场,采用Lighthill声类比理论研究头车远场气动噪声的计算.最后,比较气动噪声的仿真分析结果与实地试验结果,验证了仿真结果的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号