首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Meiotic arrest and aneuploidy in MLH3-deficient mice   总被引:22,自引:0,他引:22  
MutL homolog 3 (Mlh3) is a member of a family of proteins conserved during evolution and having dual roles in DNA mismatch repair and meiosis. The pathway in eukaryotes consists of the DNA-binding components, which are the homologs of the bacterial MutS protein (MSH 2 6), and the MutL homologs, which bind to the MutS homologs and are essential for the repair process. Three of the six homologs of MutS that function in these processes, Msh2, Msh3 and Msh6, are involved in the mismatch repair of mutations, frameshifts and replication errors, and two others, Msh4 and Msh5, have specific roles in meiosis. Of the four MutL homologs, Mlh1, Mlh3, Pms1 and Pms2, three are involved in mismatch repair and at least two, Pms2 and Mlh1, are essential for meiotic progression in both yeast and mice. To assess the role of Mlh3 in mammalian meiosis, we have generated and characterized Mlh3(-/-) mice. Here we show that Mlh3(-/-) mice are viable but sterile. Mlh3 is required for Mlh1 binding to meiotic chromosomes and localizes to meiotic chromosomes from the mid pachynema stage of prophase I. Mlh3(-/-) spermatocytes reach metaphase before succumbing to apoptosis, but oocytes fail to complete meiosis I after fertilization. Our results show that Mlh3 has an essential and distinct role in mammalian meiosis.  相似文献   

2.
We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2-/- mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.  相似文献   

3.
Marfan syndrome is an autosomal dominant disorder of connective tissue caused by mutations in fibrillin-1 (encoded by FBN1 in humans and Fbn1 in mice), a matrix component of extracellular microfibrils. A distinct subgroup of individuals with Marfan syndrome have distal airspace enlargement, historically described as emphysema, which frequently results in spontaneous lung rupture (pneumothorax; refs. 1-3). To investigate the pathogenesis of genetically imposed emphysema, we analyzed the lung phenotype of mice deficient in fibrillin-1, an accepted model of Marfan syndrome. Lung abnormalities are evident in the immediate postnatal period and manifest as a developmental impairment of distal alveolar septation. Aged mice deficient in fibrillin-1 develop destructive emphysema consistent with the view that early developmental perturbations can predispose to late-onset, seemingly acquired phenotypes. We show that mice deficient in fibrillin-1 have marked dysregulation of transforming growth factor-beta (TGF-beta) activation and signaling, resulting in apoptosis in the developing lung. Perinatal antagonism of TGF-beta attenuates apoptosis and rescues alveolar septation in vivo. These data indicate that matrix sequestration of cytokines is crucial to their regulated activation and signaling and that perturbation of this function can contribute to the pathogenesis of disease.  相似文献   

4.
Variation in FTO contributes to childhood obesity and severe adult obesity   总被引:18,自引:0,他引:18  
We identified a set of SNPs in the first intron of the FTO (fat mass and obesity associated) gene on chromosome 16q12.2 that is consistently strongly associated with early-onset and severe obesity in both adults and children of European ancestry with an experiment-wise P value of 1.67 x 10(-26) in 2,900 affected individuals and 5,100 controls. The at-risk haplotype yields a proportion of attributable risk of 22% for common obesity. We conclude that FTO contributes to human obesity and hence may be a target for subsequent functional analyses.  相似文献   

5.
The transcriptional program of meiosis and sporulation in fission yeast   总被引:16,自引:0,他引:16  
Mata J  Lyne R  Burns G  Bähler J 《Nature genetics》2002,32(1):143-147
  相似文献   

6.
7.
Silencing of unsynapsed meiotic chromosomes in the mouse   总被引:23,自引:0,他引:23  
In Neurospora, DNA unpaired in meiosis both is silenced and induces silencing of all DNA homologous to it. This process, called meiotic silencing by unpaired DNA, is thought to protect the host genome from invasion by transposable elements. We now show that silencing of unpaired (unsynapsed) chromosome regions also takes place in the mouse during both male and female meiosis. The tumor suppressor protein BRCA1 is implicated in this silencing, mirroring its role in the meiotic silencing of the X and Y chromosomes in normal male meiosis. These findings impact on the interpretation of the relationship between synaptic errors and sterility in mammals and extend our understanding of the biology of Brca1.  相似文献   

8.
9.
The transition from mitosis to meiosis is a defining juncture in the life cycle of sexually reproducing organisms. In yeast, the decision to enter meiosis is made before the single round of DNA replication that precedes the two meiotic divisions. We present genetic evidence of an analogous decision point in the germ line of a multicellular organism. The mouse Stra8 gene is expressed in germ cells of embryonic ovaries, where meiosis is initiated, but not in those of embryonic testes, where meiosis does not begin until after birth. Here we report that in female embryos lacking Stra8 gene function, the early, mitotic development of germ cells is normal, but these cells then fail to undergo premeiotic DNA replication, meiotic chromosome condensation, cohesion, synapsis and recombination. Combined with previous findings, these genetic data suggest that active differentiation of ovarian germ cells commences at a regulatory point upstream of premeiotic DNA replication.  相似文献   

10.
11.
The mutation responsible for fragile X syndrome and myotonic dystrophy involves the amplification of a simple trinucleotide repeat sequence, which increases in successive generations of affected pedigrees accounting for increasing penetrance of both disorders. This common molecular basis suggests that the two diseases may share other genetic features, but whereas myotonic dystrophy exhibits a significant founder chromosome effect, fragile X syndrome apparently has a very high mutation frequency. By haplotype analysis of microsatellite markers which flank the fragile X unstable element, we have uncovered evidence of founder chromosomes of the fragile X 'mutation'. Disorders caused by heritable unstable elements may therefore exhibit common genetic properties including anticipation and founder chromosomes.  相似文献   

12.
Individuals with 22q11.2 microdeletions show behavioral and cognitive deficits and are at high risk of developing schizophrenia. We analyzed an engineered mouse strain carrying a chromosomal deficiency spanning a segment syntenic to the human 22q11.2 locus. We uncovered a previously unknown alteration in the biogenesis of microRNAs (miRNAs) and identified a subset of brain miRNAs affected by the microdeletion. We provide evidence that the abnormal miRNA biogenesis emerges because of haploinsufficiency of the Dgcr8 gene, which encodes an RNA-binding moiety of the 'microprocessor' complex and contributes to the behavioral and neuronal deficits associated with the 22q11.2 microdeletion.  相似文献   

13.
From fused toes in mice to human obesity   总被引:2,自引:0,他引:2  
Groop L 《Nature genetics》2007,39(6):706-707
  相似文献   

14.
During evolution different genes evolve at unequal rates, reflecting the varying functional constraints on phenotype. An important contributor to this variation is genetic buffering, which reduces the potential detrimental effects of mutations. We studied whether gene duplication and redundant metabolic networks affect genetic buffering by comparing the evolutionary rate of 242 human and mouse orthologous genes involved in metabolic pathways. A gene with a redundant network is defined as one for which the structural layout of metabolic pathways provides an alternative metabolic route that can, in principle, compensate for the loss of a protein function encoded by the gene. We found that genes with redundant networks evolve at similar rates as did genes without redundant networks, [corrected] but no significant difference was detected between single-copy genes and gene families. This implies that redundancy in metabolic networks provides significantly more genetic buffering than do gene families. We also found that genes encoding proteins involved in glycolysis and gluconeogenesis showed as a group a distinct pattern of variation, in contrast to genes involved in other pathways. These results suggest that redundant networks provide genetic buffering and contribute to the functional diversification of metabolic pathways.  相似文献   

15.
16.
The meiotic cell cycle is characterized by high levels of recombination induced by DNA double-strand breaks (DSBs), which appear after completion of premeiotic S phase, leading to the view that initiation of recombination depends on meiotic DNA replication. It has also been indicated that DNA replication initiation proteins may differ between the meiotic and mitotic cell cycles, giving rise to an altered S phase, which could contribute to the high level of recombination during meiosis. We have investigated these possibilities in the fission yeast Schizosaccharomyces pombe and found that core DNA replication initiation proteins used during the mitotic cell cycle, including Cdc18p (budding yeast Cdc6p), Cdc19p (Mcm2p), Cdc21p (Mcm4p) and Orp1p (Orc1p), are also required for premeiotic S phase. Reduced activity of these proteins prevents completion of DNA replication but not formation of DSBs. We conclude that recombination-related DSB formation does not depend on the completion of meiotic DNA replication and we propose two parallel developmental sequences during the meiotic cell cycle: one for premeiotic S phase and the other for initiating recombination.  相似文献   

17.
The genome of the fission yeast, Schizosaccharomyces pombe, consists of some 14 million base pairs of DNA contained in three chromosomes. On account of its excellent genetics we used it as a test system for a strategy designed to map mammalian chromosomes and genomes. Data obtained from hybridization fingerprinting established an ordered library of 1,248 yeast artificial chromosome clones with an average size of 535 kilobases. The clones fall into three contigs completely representing the three chromosomes of the organism. This work provides a high resolution physical and clone map of the genome, which has been related to available genetic and physical map information.  相似文献   

18.
19.
Neuropathy target esterase (NTE) is involved in neural development and is the target for neurodegeneration induced by selected organophosphorus pesticides and chemical warfare agents. We generated mice with disruptions in Nte, the gene encoding NTE. Nte(-/-) mice die after embryonic day 8, and Nte(+/-) mice have lower activity of Nte in the brain and higher mortality when exposed to the Nte-inhibiting compound ethyl octylphosphonofluoridate (EOPF) than do wild-type mice. Nte(+/-) and wild-type mice treated with 1 mg per kg of body weight of EOPF have elevated motor activity, showing that even minor reduction of Nte activity leads to hyperactivity. These studies show that genetic or chemical reduction of Nte activity results in a neurological phenotype of hyperactivity in mammals and indicate that EOPF toxicity occurs directly through inhibition of Nte without the requirement for Nte gain of function or aging.  相似文献   

20.
Inflammation influences iron balance in the whole organism. A common clinical manifestation of these changes is anemia of chronic disease (ACD; also called anemia of inflammation). Inflammation reduces duodenal iron absorption and increases macrophage iron retention, resulting in low serum iron concentrations (hyposideremia). Despite the protection hyposideremia provides against proliferating microorganisms, this 'iron withholding' reduces the iron available to maturing red blood cells and eventually contributes to the development of anemia. Hepcidin antimicrobial peptide (Hamp) is a hepatic defensin-like peptide hormone that inhibits duodenal iron absorption and macrophage iron release. Hamp is part of the type II acute phase response and is thought to have a crucial regulatory role in sequestering iron in the context of ACD. Mice with deficiencies in the hemochromatosis gene product, Hfe, mounted a general inflammatory response after injection of lipopolysaccharide but lacked appropriate Hamp expression and did not develop hyposideremia. These data suggest a previously unidentified role for Hfe in innate immunity and ACD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号