首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lagrange中值定理的一点注记以定理A的形式给出了当弦的斜率K大于max(f (a),f-(b)或小于min{f' (a),f'0(b)}对Lagrange牛值定理的相关结构。  相似文献   

2.
最近B.Jacobson证得 定理J 若f(t)在[a,x]上连续,在a点可导且f'(a)≠0,又c适合 integral from n=c to x(f(t)dt=f(c)(x-a),a相似文献   

3.
<正> Sard定理右f(x)d[a,b]上连续可微,则集合{f(x):f'(x)=0}的Lcbcsgnc测度为零。为证明此定理,我们先证一个引理: 引理若f(x)在[a,b]上连续可微,则对任开集A[a,b],有{f(x):x∈A}  相似文献   

4.
一、引理引理1 若函数f(x)在闭区间[a,b]连续,则f(x)在[a,b]上一致连续.引理2 若函数f(x)在[a,b]及[b,c]都一致连续,则f(x)在[a,c]上一致连续.注改[b,c]为[b, ∞)时,结论也成立.引理3 设函数f(x)在开区间(a,b)连续,则f(x)在(a,b)一致连续的充分必要条件是f(a 0)、f(b-0)都存在且为有限值.证明见[1]之正文及相应习题.二、主要结论定理1 若函数f(x)在区间I(I可开、半开、有限或无限,下同)可导,且f’(x)在I有界,则函数f(x)在I一致连续.  相似文献   

5.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

6.
本文把中值定理中,函数在闭区间[a,b]上连续的条件减弱为在闭区间[a,b]上可积,在开区间(a,b)有介值性,证明定理同样成立.  相似文献   

7.
本文主要系构造一辅助函数,从而将哥西中值定理推广到n个函数。茲先讨论三个函数的情形。定理1 设函数f(x),φ(x),ψ(x)在闭区间[a,b]上连续,在开区间[a,b]上可微,则一定有这样—点c(a相似文献   

8.
讨论了f-P~n[f']的值分布问题,得到关于Hayman问题的一个推广:定理1 设f为超越亚纯函数,a_j(j=1,2,…,m-1)为f的小函数,m,n,为自然数.记P[f']=(f')~m+a_1(f')~(m-1)+...+a_(m-1)f'则当n≥3时,,f-P~n[f']取任意有穷复数无穷多次.  相似文献   

9.
我们熟知欧拉不等式2r≤R 2 3r≤ 3R本文得到①欧拉不等式的的平均值插入2 3r≤ (abc) 13 ≤ 13(a +b+c)≤ 3R②欧拉不等式的广义积分插入2 3r≤ (abc) 13 ≤ p∫+∞0[(a+x) (b+x) (c +x) ]-(p+1)3 dx -1P ≤ 13(a+b +c) ≤ 3R③欧拉不等式的无限多个广义积分插入2 3r≤ (abc) 13 ≤J(a、b、c;p) ≤J(a、b、c ;p、li、λk)≤ 13(a +b+c)≤ 3R④随机函数序列在网络中加密的应用。  相似文献   

10.
本文研究了一类非自治三阶常微分方程x-a(t)x+b(t)x~2-c(t)x~3=0正周期解的存在性,其中a(t),b(t),c(t)是连续的T-周期函数,满足0a≤a(t)≤A, 0b≤b(t)≤B, 0c≤c(t)≤C,a,A,b,B,c,C是正常数.运用Mawhin延拓定理,本文证明了方程至少存在两个正T-周期解.  相似文献   

11.
在学习了导数之后,要想运用导数这一概念去分析和解决更复杂的问题,只知道怎样计算导数还是不够的,还需要掌握微分中值定理,它是微分应用的桥梁,对微分中值定理有必要进行更深入的研究.微分中值定理包括三个定理:[1]罗尔(Rolle)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(b)=f(a),则在(a,b)内至少存在一点ξ,使得 f’(ξ)=0.[2]拉格朗日(Lagrange)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可  相似文献   

12.
<正> 在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)  相似文献   

13.
《计算机学报》5卷(1982年)2期郭聿琦等同志一文[2]定理3的证明有误(当L接受空字时,该证明所作的文法不合用),从而所得的中间结果(下文的(a))亦有误;该文接着引用[1]定理3.4的证明但却曲解为下文的(b)(事实上,[1]的原文显然与(b)不同);由(a)(b()两项结果作者便得出下文的(c)。事实上,无论(a)(b)或(c)都是错误的。  相似文献   

14.
对Alzer's不等式的左端作进一步推广,并利用数学归纳法及微分中值定理证明了如下结果:对(A)a,b ∈R+及r∈R+,an+b/a(n+m)+b<[1/n n∑i=1(ai+b)r/1/n+m n+m∑i=1(ai+b)r]1/r.  相似文献   

15.
设a,b,c为正整数,(a,b,c)=1,x,y,z为非负整数,(a,b)=d,a=a_1d,b=b_1d,u,v为非负整数,当a_1u+b_1v能够表出c时,(1) ax+by+cz所不能表出的最大整数为M=(ab)/(a,b)+c(a,b)-a-b-c. [1]在a_1u+b_1v不能表出c时,c可以表成c=a_1r-b_1s或c=b_1s-a_1r,其中 a_1r+b_1s相似文献   

16.
关于一类二项式和的整除性质的推广   总被引:2,自引:2,他引:0  
Mare Chamberland和Karl Dilcher[Divisibility properties of a class of binomial sums, J. Number Theory, 120(2006)pp.349-371]研究了一类二项式和uεa,b(n)并给出了一些有趣的性质,其中uεa,b(n)=∑nk=0(-1)εk(nk)a(2nk)b,对a,b,n∈N和ε∈{0,1}.最后,他们提出了uεa,b(n)的一种推广,即uεa,b,c(n)=∑nk=0(-1)εk(nk)a(2nk)b(3nk)c,其中a,b,c,n∈N,ε∈{0,1},期望uεa,b,c(n)具有与uεa,b(n)相似的性质,但并未给出具体的性质及证明.在本文中,我们给出并证明了uεa,b,c(n)的与Wolstenholme定理有关的这部分性质.  相似文献   

17.
(一)众所周知,积分第一中值定理是下面的定理若函数f(x)在闭区间[a,b]上连续,函数g(x)在[a,b]上可积,且不变号,则在[a,b]上至少存在一点ζ,使得(?)注意,上述定理中的ζ∈[a,b],文[1]在不改变其条件的情况下,将结论加强为ζ∈(a,b),这种  相似文献   

18.
在《数学分析》中关于一元函数的最大(小)值问题,对闭区间上的连续函数有一个较简单的算法,但对开区间区的连续函数仅谈了一个开区间的可导函数在具有唯一驻点时判别它是否是取得最大(小)值点的一个方法(见参考文献[1],[2],[3],[4])。这个方法通常被称为“单峰,单谷定理”,本文以明确形式归纳为推论1。本文定理一将其推广到较为一般的形式。在此基础上本文定理二给出了“开区间上的连续函数在具有唯一极值备选点时,具有最大(小)值的充分必要条件”。这是本文的主要结果。设 f(x)在(a,b)内连续,而在(a,b)\{c},a0这个定理给出了任意区间的连续函数在具有唯一极值备选点时求函数最大或最小值的一个相当简单的算法(推论2)(如文中例题所示)。  相似文献   

19.
本学报1979年第2期及1980年第3期分别载文论述了积分第一中值定理就“中值”c∈(a,b)的情形的证明,为适应教学需要,对此本文再较条理地整理如下。定理设函数f(x)在区间〔a,b〕上连续,函数g(x)在〔a,b〕上可积且不变号,则存在点c∈(a,6),使得  相似文献   

20.
关于“中间点”的渐近性的一个注记   总被引:2,自引:0,他引:2  
第一积分中值定理设f(x)在[a,b)上连续,g(x)在[a,b)上可积且不变号,则存在ξ∈(a,b)使得(1)文[1]讨论了(1)中的“中闻点”ξ当b→a~+时的渐近性,即下述下理1.定理1 若f(x)与g(x)在[a,b]上连续,且g(x)在(a,b)上不变号,f+(a)(f+(a)表示f在a点的右导数,下同)存在且不等于零,g(a)≠0,则对于(1)中的ξ有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号