首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M M Le Beau  C A Westbrook  M O Diaz  J D Rowley  M Oren 《Nature》1985,316(6031):826-828
Recent studies have demonstrated that the cellular tumour antigen p53 (ref. 1) can complement activated ras genes in the transformation of rat fibroblasts, suggesting that the gene encoding p53 may act as an oncogene. Here, by using in situ chromosomal hybridization, we have mapped the p53 gene to human chromosome 17, at bands 17q21-q22, the region containing one of the breakpoints in the translocation t(15;17) (q22;q21) associated with acute promyelocytic leukaemia (APL). Hybridization of p53 and erb-A (17q11-q12) probes to malignant cells from three APL patients indicated that the p53 gene is translocated to chromosome 15 (15q+), whereas erb-A remains on chromosome 17. Analysis of variant translocations demonstrates that the 15q+ chromosome contains the conserved junction, suggesting a role for p53 in the pathogenesis of APL. However, rearrangements of the p53 gene were not detected on Southern blotting of DNA from leukaemic cells of four APL patients with t(15;17).  相似文献   

2.
Mutations in the p53 gene occur in diverse human tumour types   总被引:196,自引:0,他引:196  
The p53 gene has been a constant source of fascination since its discovery nearly a decade ago. Originally considered to be an oncogene, several convergent lines of research have indicated that the wild-type gene product actually functions as a tumour suppressor gene. For example, expression of the neoplastic phenotype is inhibited, rather than promoted, when rat cells are transfected with the murine wild-type p53 gene together with mutant p53 genes and/or other oncogenes. Moreover, in human tumours, the short arm of chromosome 17 is often deleted. In colorectal cancers, the smallest common region of deletion is centred at 17p13.1; this region harbours the p53 gene, and in two tumours examined in detail, the remaining (non-deleted) p53 alleles were found to contain mutations. This result was provocative because allelic deletion coupled with mutation of the remaining allele is a theoretical hallmark of tumour-suppressor genes. In the present report, we have attempted to determine the generality of this observation; that is, whether tumours with allelic deletions of chromosome 17p contain mutant p53 genes in the allele that is retained. Our results suggest that (1) most tumours with such allelic deletions contain p53 point mutations resulting in amino-acid substitutions, (2) such mutations are not confined to tumours with allelic deletion, but also occur in at least some tumours that have retained both parental 17p alleles, and (3) p53 gene mutations are clustered in four 'hot-spots' which exactly coincide with the four most highly conserved regions of the gene. These results suggest that p53 mutations play a role in the development of many common human malignancies.  相似文献   

3.
Human p53 gene localized to short arm of chromosome 17   总被引:7,自引:0,他引:7  
The p53 gene codes for a nuclear protein that has an important role in normal cellular replication. The concentration of p53 protein is frequently elevated in transformed cells. Transfection studies show that the p53 gene, in collaboration with the activated ras oncogene, can transform cells. Chromosomal localization may provide a better understanding of the relationship of p53 to other human cellular genes and of its possible role in malignancies associated with specific chromosomal rearrangements. A recent study mapped the human p53 gene to the long arm of chromosome 17 (17q21-q22) using in situ chromosomal hybridization. Here, by Southern filter hybridization of DNAs from human-rodent hybrids, we have localized the p53 gene to the short arm of human chromosome 17.  相似文献   

4.
5.
B Bressac  M Kew  J Wands  M Ozturk 《Nature》1991,350(6317):429-431
Hepatocellular carcinoma (HCC) is a prevalent cancer in sub-Saharan Africa and eastern Asia. Hepatitis B virus and aflatoxins are risk factors for HCC, but the molecular mechanism of human hepatocellular carcinogenesis is largely unknown. Abnormalities in the structure and expression of the tumour-suppressor gene p53 are frequent in HCC cell lines, and allelic losses from chromosome 17p have been found in HCCs from China and Japan. Here we report on allelic deletions from chromosome 17p and mutations of the p53 gene found in 50% of primary HCCs from southern Africa. Four of five mutations detected were G----T substitutions, with clustering at codon 249. This mutation specificity could reflect exposure to a specific carcinogen, one candidate being aflatoxin B1 (ref. 7), a food contaminant in Africa, which is both a mutagen that induces G to T substitution and a liver-specific carcinogen.  相似文献   

6.
p63 and p73 are required for p53-dependent apoptosis in response to DNA damage   总被引:49,自引:0,他引:49  
Flores ER  Tsai KY  Crowley D  Sengupta S  Yang A  McKeon F  Jacks T 《Nature》2002,416(6880):560-564
The tumour-suppressor gene p53 is frequently mutated in human cancers and is important in the cellular response to DNA damage. Although the p53 family members p63 and p73 are structurally related to p53, they have not been directly linked to tumour suppression, although they have been implicated in apoptosis. Given the similarity between this family of genes and the ability of p63 and p73 to transactivate p53 target genes, we explore here their role in DNA damage-induced apoptosis. Mouse embryo fibroblasts deficient for one or a combination of p53 family members were sensitized to undergo apoptosis through the expression of the adenovirus E1A oncogene. While using the E1A system facilitated our ability to perform biochemical analyses, we also examined the functions of p63 and p73 using an in vivo system in which apoptosis has been shown to be dependent on p53. Using both systems, we show here that the combined loss of p63 and p73 results in the failure of cells containing functional p53 to undergo apoptosis in response to DNA damage.  相似文献   

7.
p73 (ref. 1) has high homology with the tumour suppressor p53 (refs 2-4), as well as with p63, a gene implicated in the maintenance of epithelial stem cells. Despite the localization of the p73 gene to chromosome 1p36.3, a region of frequent aberration in a wide range of human cancers, and the ability of p73 to transactivate p53 target genes, it is unclear whether p73 functions as a tumour suppressor. Here we show that mice functionally deficient for all p73 isoforms exhibit profound defects, including hippocampal dysgenesis, hydrocephalus, chronic infections and inflammation, as well as abnormalities in pheromone sensory pathways. In contrast to p53-deficient mice, however, those lacking p73 show no increased susceptibility to spontaneous tumorigenesis. We report the mechanistic basis of the hippocampal dysgenesis and the loss of pheromone responses, and show that new, potentially dominant-negative, p73 variants are the predominant expression products of this gene in developing and adult tissues. Our data suggest that there is a marked divergence in the physiological functions of the p53 family members, and reveal unique roles for p73 in neurogenesis, sensory pathways and homeostatic control.  相似文献   

8.
One in 10,000 children develops Wilms' tumour, an embryonal malignancy of the kidney. Although most Wilms' tumours are sporadic, a genetic predisposition is associated with aniridia, genito-urinary malformations and mental retardation (the WAGR syndrome). Patients with this syndrome typically exhibit constitutional deletions involving band p13 of one chromosome 11 homologue. It is likely that these deletions overlap a cluster of separate but closely linked genes that control the development of the kidney, iris and urogenital tract (the WAGR complex). A discrete aniridia locus, in particular, has been defined within this chromosomal segment by a reciprocal translocation, transmitted through three generations, which interrupts 11p13. In addition, the specific loss of chromosome 11p alleles in sporadic Wilms' tumours has been demonstrated, suggesting that the WAGR complex includes a recessive oncogene, analogous to the retinoblastoma locus on chromosome 13. In WAGR patients, the inherited 11p deletion is thought to represent the first of two events required for the initiation of a Wilms' tumour, as suggested by Knudson from epidemiological data. We have now isolated the deleted chromosomes 11 from four WAGR patients in hamster-human somatic cell hybrids, and have tested genomic DNA from the hybrids with chromosome 11-specific probes. We show that 4 of 31 markers are deleted in at least one patient, but that of these markers, only the gene encoding the beta-subunit of follicle-stimulating hormone (FSHB) is deleted in all four patients. Our results demonstrate close physical linkage between FSHB and the WAGR locus, suggest a gene order for the four deleted markers and exclude other markers tested from this region. In hybrids prepared from a balanced translocation carrier with familial aniridia, the four markers segregate into proximal and distal groups. The translocation breakpoint, which identifies the position of the aniridia gene on 11p, is immediately proximal to FSHB, in the interval between FSHB and the catalase gene.  相似文献   

9.
Amplification of a gene encoding a p53-associated protein in human sarcomas.   总被引:106,自引:0,他引:106  
Despite extensive data linking mutations in the p53 gene to human tumorigenesis, little is known about the cellular regulators and mediators of p53 function. MDM2 is a strong candidate for one such cellular protein; the MDM2 gene was originally identified by virtue of its amplification in a spontaneously transformed derivative of mouse BALB/c cells and the MDM2 protein subsequently shown to bind to p53 in rat cells transfected with p53 genes. To determine whether MDM2 plays a role in human cancer, we have cloned the human MDM2 gene. Here we show that recombinant-derived human MDM2 protein binds human p53 in vitro, and we use MDM2 clones to localize the human MDM2 gene to chromosome 12q13-14. Because this chromosomal position appears to be altered in many sarcomas, we looked for changes in human MDM2 in such cancers. The gene was amplified in over a third of 47 sarcomas, including common bone and soft tissue forms. These results are consistent with the hypothesis that MDM2 binds to p53, and that amplification of MDM2 in sarcomas leads to escape from p53-regulated growth control. This mechanism of tumorigenesis parallels that for virally-induced tumours, in which viral oncogene products bind to and functionally inactivate p53.  相似文献   

10.
The FBXW7/hCDC4 gene encodes a ubiquitin ligase implicated in the control of chromosome stability. Here we identify the mouse Fbxw7 gene as a p53-dependent tumour suppressor gene by using a mammalian genetic screen for p53-dependent genes involved in tumorigenesis. Radiation-induced lymphomas from p53+/- mice, but not those from p53-/- mice, show frequent loss of heterozygosity and a 10% mutation rate of the Fbxw7 gene. Fbxw7+/- mice have greater susceptibility to radiation-induced tumorigenesis, but most tumours retain and express the wild-type allele, indicating that Fbxw7 is a haploinsufficient tumour suppressor gene. Loss of Fbxw7 alters the spectrum of tumours that develop in p53 deficient mice to include a range of tumours in epithelial tissues such as the lung, liver and ovary. Mouse embryo fibroblasts from Fbxw7-deficient mice, or wild-type mouse cells expressing Fbxw7 small interfering RNA, have higher levels of Aurora-A kinase, c-Jun and Notch4, but not of cyclin E. We propose that p53-dependent loss of Fbxw7 leads to genetic instability by mechanisms that might involve the activation of Aurora-A, providing a rationale for the early occurrence of these mutations in human cancers.  相似文献   

11.
Since its discovery in the early 1990s the deleted in colorectal cancer (DCC) gene, located on chromosome 18q21, has been proposed as a tumour suppressor gene as its loss is implicated in the majority of advanced colorectal and many other cancers. DCC belongs to the family of netrin 1 receptors, which function as dependence receptors as they control survival or apoptosis depending on ligand binding. However, the role of DCC as a tumour suppressor remains controversial because of the rarity of DCC-specific mutations and the presence of other tumour suppressor genes in the same chromosomal region. Here we show that in a mouse model of mammary carcinoma based on somatic inactivation of p53, additional loss of DCC promotes metastasis formation without affecting the primary tumour phenotype. Furthermore, we demonstrate that in cell cultures derived from p53-deficient mouse mammary tumours DCC expression controls netrin-1-dependent cell survival, providing a mechanistic basis for the enhanced metastatic capacity of tumour cells lacking DCC. Consistent with this idea, in vivo tumour-cell survival is enhanced by DCC loss. Together, our data support the function of DCC as a context-dependent tumour suppressor that limits survival of disseminated tumour cells.  相似文献   

12.
Intronic point mutations are rare and totally unknown for human laryngeal squamous cell carcinoma (LSCC). To explore the relationship of p53 gene intronic mutation to the development of human LSCC, DNA was extracted from both tumor tissues and matched normal tissues of 55 patients with LSCC in northeast of China. Polymerase chain reaction amplification-single strand conformational polymorphism (PCR-SSCP) combined with silver staining and DNA direct sequencing were used to detect mutations in exons 7~8 (p53E7 and p53E8) and introns 7~8 (p53I7 and p53I8) of p53 gene. The p53E7 mutation was detected in 17 out of 55 patients, and the p53I7 mutation in 21 patients. No mutation was found at p53E8 or p53I8 site. The difference between tumor group and paired normal group on the rates of both p53E7 and p53I7 mutations was statistically significant. The rate of p53I7 mutations in tumor tissue was higher than that of normal tissue, and so was that of p53E7. Sequence analysis revealed that most p53I7 mutations were at the nucleotides in the branch point sequence or the polypyrimidine tract in the 3′-splice acceptor site of the intron 7. The high incidence of p53 gene intronic mutation in LSCC indicates that genetic changes within the noncoding region of the p53 gene may serve as an alternative mechanism of activating the pathogenesis of human laryngeal squamous cell carcinoma. Mutations in the noncoding region of this gene should be further studied.  相似文献   

13.
Meiosis in the female germ line of mammals is distinguished by a prolonged arrest in prophase of meiosis I between homologous chromosome recombination and ovulation. How DNA damage is detected in these arrested oocytes is poorly understood, but it is variably thought to involve p53, a central tumour suppressor in mammals. While the function of p53 in monitoring the genome of somatic cells is clear, a consensus for the importance of p53 for germ line integrity has yet to emerge. Here we show that the p53 homologue p63 (refs 5, 6), and specifically the TAp63 isoform, is constitutively expressed in female germ cells during meiotic arrest and is essential in a process of DNA damage-induced oocyte death not involving p53. We also show that DNA damage induces both the phosphorylation of p63 and its binding to p53 cognate DNA sites and that these events are linked to oocyte death. Our data support a model whereby p63 is the primordial member of the p53 family and acts in a conserved process of monitoring the integrity of the female germ line, whereas the functions of p53 are restricted to vertebrate somatic cells for tumour suppression. These findings have implications for understanding female germ line fidelity, the regulation of fertility and the evolution of tumour suppressor mechanisms.  相似文献   

14.
p53基因在小鼠胚胎发育过程中的表达   总被引:1,自引:1,他引:0  
以E9日龄至E14日龄昆明种正常小鼠胚胎为材料,利用质粒扩增的、地高辛标记的基因探针在组织切片上进行DNA-mRNA 分子原位杂交,研究了p53基因在小鼠胚胎发育过程中的表达.结果表明, p53基因不参与E9和E10日胚胎发育中的器官原基形成,参与器官的进一步分化成熟过程.这些器官主要有眼、脑、心、肺、脊柱和面颌骨,肝组织的发育与其无关; p53基因一方面参与胚胎发育中的细胞周期调控,另一方面也参与了某些与细胞周期无关的过程;不同的器官有不同的细胞周期调控机制.  相似文献   

15.
Most human tumours have genetic mutations in their Rb and p53 pathways, but retinoblastoma is thought to be an exception. Studies suggest that retinoblastomas, which initiate with mutations in the gene retinoblastoma 1 (RB1), bypass the p53 pathway because they arise from intrinsically death-resistant cells during retinal development. In contrast to this prevailing theory, here we show that the tumour surveillance pathway mediated by Arf, MDM2, MDMX and p53 is activated after loss of RB1 during retinogenesis. RB1-deficient retinoblasts undergo p53-mediated apoptosis and exit the cell cycle. Subsequently, amplification of the MDMX gene and increased expression of MDMX protein are strongly selected for during tumour progression as a mechanism to suppress the p53 response in RB1-deficient retinal cells. Our data provide evidence that the p53 pathway is inactivated in retinoblastoma and that this cancer does not originate from intrinsically death-resistant cells as previously thought. In addition, they support the idea that MDMX is a specific chemotherapeutic target for treating retinoblastoma.  相似文献   

16.
17.
Compromised HOXA5 function can limit p53 expression in human breast tumours   总被引:28,自引:0,他引:28  
  相似文献   

18.
Specific chromosomal translocations have been observed in several human and animal tumours and are believed to be important in tumorigenesis. In many of these translocations the breakpoints lie near cellular homologues of transforming genes, suggesting that tumour development is partly due to the activation of these genes. The best-characterized example of such a translocation occurs in mouse plasmacytoma and human B-cell lymphoma, where c-myc, the cellular homologue of the viral oncogene myc, is brought into close proximity with either the light- or heavy-chain genes of the immunoglobulin loci, resulting in a change in the regulation of the myc gene. T-cell malignancies also have characteristic chromosomal abnormalities, many of which seem to involve the 14q11-14q13 region. This region has recently been found to contain the alpha-chain genes of the human T-cell antigen receptor. Here we determine more precisely the chromosome breakpoints in two patients whose leukaemic T cells contain reciprocal translocations between 11p13 and 14q13. Segregation analysis of somatic cell hybrids demonstrates that in both patients the breakpoints occur between the variable (V) and constant (C) region genes of the T-cell receptor alpha-chain locus, resulting in the translocation of the C-region gene from chromosome 14 to chromosome 11. As the 11p13 locus has been implicated in the development of Wilms' tumour, it is possible that either the Wilms' tumour gene or a yet unidentified gene in this region is involved in tumorigenesis and is altered as a result of its translocation into the T-cell receptor alpha-chain locus.  相似文献   

19.
Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.  相似文献   

20.
p53 inhibition by the LANA protein of KSHV protects against cell death   总被引:55,自引:0,他引:55  
Friborg J  Kong W  Hottiger MO  Nabel GJ 《Nature》1999,402(6764):889-894
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号