首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
设χ'l(G),χ″l(G)和Δ(G)分别表示平面图G的列表色数,列表全色数和最大度,目前已经证明:若G是Δ≥12的平面图,则χ'l(G)=Δ,χ″l(G)=Δ+1。本文将证明:若G是Δ≥9且不含相邻4-圈的平面图,则χ″l(G)=Δ+1,χ'l(G)=Δ。  相似文献   

12.
考虑二阶非线性差分方程Δ(anΔxn) bnf(xn,Δxn) cng(xn)h(Δxn)=p(n,xn,Δxn),n=0,1,2,... 和anΔ^2xn bnf(xn,Δxn) cng(xn)h(Δxn)=p(n,xn,Δxn),n=0,1,2...,得到了它们的所有解及解的一阶差分算子有界的若干充分条件。  相似文献   

13.
在pH8.0的Tris-HCl缓冲溶液及32mg/L PEG20000的存在下,碱性磷酸酯酶(ALP)催化底物5-溴-4-氯-3-吲哚基磷酸盐(BCIP)水解生成不溶性的蓝色BCIP二聚体微粒,该微粒在710nm波长处产生一个共振散射峰。在选定条件下,随着ALP活性增大,710nm波长处的共振散射峰强度线性增大,碱性磷酸酯酶浓度在0.078~1.25U/L与共振散射强度增大值ΔI呈良好线性关系,其回归方程为:ΔI=512.6C+17.8,检出限为9.6×10-3U/L。该法用于合成样品中碱性磷酸酯酶的测定,结果满意。  相似文献   

14.
在连续搅拌反应器(CSTR)中,研究了阿司匹林对封闭体系中B-Z振荡反应体系的影响。研究结果表明:阿司匹林溶液浓度在5.00×10-6~5.00×10-1mol/L范围内,振荡反应的振幅变化值(ΔE)与阿司匹林浓度(c)的关系符合方程:ΔE=34.7c0.154,R2=0.999,最低检测限达10-6mol/L。  相似文献   

15.
研究了一类奇异二阶阻尼差分方程周期边值问题{Δ2x(t-1)+αΔx(t-1)+βx(t)=f(t,x(t), Δx(t-1)), t∈[1,T]Z,x(0)=x(T), Δx(0)=Δx(T)正解的存在性,其中T >2是一个整数, α、 β均为常数, f(t,x,y):[1,T]Z×(0,∞)×R→R关于(x,y)∈(0,∞)×R连续且允许f在x=0处奇异即limx→0+ f(t,x,y)=+∞,(t,y)∈[1,T]Z×R。主要结果的证明基于Leray-Schauder非线性抉择。  相似文献   

16.
考虑耦合阻尼系统{x″+p1(t)x'+q1(t)x=f1(t,y)+e1(t),y″+p2(t)y'+q2(t)y=f2(t,x)+e2(t).周解期的存在性问题.其中pi,qi,ei∈L1(R)是T-周期函数,fi∈Car(R×R+,R)(i=1,2)在原点具有奇异性.运用Schauder不动点定理和fi的奇异性,证明该系统存在周期解.  相似文献   

17.
在多孔介质中,通过对低速渗流气体的摩阻系数f 与雷诺数Re 的实验关系分析得出,随着雷诺数减小,气体的渗流规律表现出由遵从达西线性关系连续转变为非线性关系,其转变所对应的雷诺数Rec = (1. 0 ~ 4. 4) ×10- 4 。由动力学分析可知,低速渗流气体出现的非线性现象是由气体分子与孔隙壁的作用引起, 并给出了相应条件下渗流速度V 与压力梯度Δp/ΔL 的关系。  相似文献   

18.
了解生物活性小分子与血清蛋白之间的相互作用有重要意义。采用激发波长280 nm,检测不同浓度异戊烯根皮苷对BSA在30°C和40°C下300~400 nm范围荧光发射光谱的影响。结果表明,BSA的内源荧光强度随溶液中加入异戊烯根皮苷浓度的增加呈现有规律的降低,异戊烯根皮苷对BSA荧光猝灭常数Ksv30°C=6.2×10...  相似文献   

19.
三维空间中一类非线性波动方程整体解的存在性   总被引:15,自引:14,他引:1  
研究了非线性波动方程  相似文献   

20.
对于最大度是Δ的可平面图G,如果χ′(G)=Δ,称G为第一类图;如果χ′(G)=Δ+1,称G为第二类图.χ′(G)表示G的边染色数.1965年,Vizing举例说明Δ=5的可平面图中既有第一类图,也有第二类图.作者运用Discharge方法证明最大度是5且不包含有弦的4-圈和有弦的5-圈,或不包含有弦的4-圈和有弦的6-圈的可平面图是第一类图.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号