首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
高地应力区深埋隧道三维应力场数值模拟   总被引:1,自引:0,他引:1  
结合高地应力区某深埋隧道工程,通过三维弹塑性有限元数值模拟,分析隧道掌子面推进过程中的围岩空间应力场状态和演化趋势.结果表明:当掌子面接近和通过某一断面时,围岩主应力大小和方向发生相应的变化.隧道开挖对平面σx、σy的主要影响范围约为0.5B,对围岩空间主应力和剪应力的影响范围约1.0B,对围岩位移和屈服接近度的影响范围分别为2.0B和1.0B.对高地应力区深埋隧道围岩稳定性分析、确定合理的支护措施以及制定合理的开挖方案具有重要的意义.  相似文献   

2.
李卫兵 《科学技术与工程》2012,12(19):4701-4707
洞室围岩中主应力随掌子面推进过程动态发展变化的研究较为少见。假定了三种较为常见的初始应力场分布特征,利用FLAC3D数值模拟软件,研究分析了圆形洞室洞壁围岩应力随掌子面推进过程的变化特征。研究结果表明:围岩二次应力场中主应力变化发展规律与初始地应力场相关。不同组合下主应力表现不同变化特征。掌子面推进过程中主应力主要于一倍洞径范围内动态变化,这一范围亦为洞室临时支护及其他工程措施的关键部位。洞轴与最大初始主应力平行情况最有利于洞室稳定。研究结果可为地下工程支护设计及支护等措施施加时机选择提供一定的参考。  相似文献   

3.
在深埋隧道施工过程中,掌子面推进将引起围岩内部应力的重新分布,洞壁附近围岩处于扰动状态,确定扰动区应力对于深埋隧道结构设计和安全施工有着极为重要的作用。在阐述扰动区应力主要测试方法的基础上,使用钻孔式测试方法得到了某深埋隧道花岗岩围岩中扰动区应力及其随时间的变化过程,提出了使用双曲线拟合确定扰动区应力测试稳定值对应时刻的方法,研究了水平方向和垂直方向扰动区应力测试稳定值的分布特征。结果表明,与其他扰动区应力测试方法相比,钻孔式测试方法具有快捷、方便、实用的特点,可用于确定深埋隧道围岩扰动区应力。  相似文献   

4.
为了能更好的研究隧洞围岩在非均匀应力场下开挖过程中整体的稳定性,根据隧洞围岩在非均匀应力场下的模型特点,将隧洞围岩周围应力划分为两部分进行叠加。基于D-P准则与理想弹塑性本构关系,采用双调和方程和半逆解法,推导出非均匀应力场下圆形隧洞弹性区围岩应力的解析表达式,并通过Flac3D数值模拟对理论分析结果加以验证。结果表明:考虑中间主应力系数的影响时,中间主应力系数越大与之对应的侧压系数范围越小;侧压系数越大隧洞帮部集中应力降低,拱顶的集中应力增大;同时理论分析结果与数值模拟结果基本一致。在考虑非均匀应力场分布的力学模型更为准确地反映了隧洞围岩应力分布特点,对隧洞围岩的支护方案具有一定的意义。  相似文献   

5.
隧洞围岩应力开挖扰动特征与规律研究   总被引:1,自引:0,他引:1  
以锦屏二级水电站引水隧洞为研究实例,对引水隧洞掌子面推进过程中的围岩应力状态和主应力轴变化规律进行了研究.分别通过地质数据处理中的"极点图"表现方法和断裂力学应力状态参数应力三维度,来描述主应力轴的旋转变化规律和应力状态变化规律.研究表明,随着掌子面推进,掌子面前方的围岩主应力轴方向调整具有一定共性,均表现为最大、最小主应力以一定交角指向临空面,中间主应力近似平行临空面,隧洞围岩应力状态由三轴受压状态转化至双轴压缩或单轴压缩状态.最后,根据应力三维度随开挖进尺的变化关系和空间分布特征,将隧洞围岩开挖应力扰动区分为强应力扰动区和弱应力扰动区,分析了各扰动区的应力扰动特征和规律,相关结论与认识对于围岩开挖扰动研究具有较大的理论和工程意义.  相似文献   

6.
高地温深埋水工隧洞黏弹—塑性岩体中,由于高温环境的影响和隧洞降温等,致使围岩产生一定的温度应力。因此研究高地温隧洞围岩解析解时必须研究温度应力对围岩塑性区以及应力应变的影响。基于广义Kelvin模型与Bingham模型组成的高地温深埋水工隧洞黏弹塑性围岩力学模型,并在考虑应力路径对围岩与支护的影响下,结合高地温环境中温度应力对围岩与衬砌的影响,进而推导高地温环境热力耦合作用下围岩应力、应变、洞壁位移以及围岩塑性区半径的解析解。基于新疆某高地温水工隧洞工程进行分析与计算,对温度、围岩应力应变及塑性区半径的关系展开理论计算与分析。结果表明,考虑温度应力后计算得到的围岩位移更小。当隧洞内温度变化到达一定量时,所产生的温度应力可能会对围岩与衬砌相互作用的稳定性产生影响。  相似文献   

7.
含缺口受拉平板三维应力场及其对脆性破坏的影响   总被引:8,自引:2,他引:8  
含尖缺口受拉平板三维应力场 ,在理论上已有多种解析解法但演算复杂。该文从 Neiber解析法出发 ,导出含尖缺口受拉平板三维应力场的实用简化计算方法。对于脆性破坏最有意义的是裂缝尖端附近的应力状态 ,经过理论计算 ,简化解在距离裂缝一定范围内的误差只有 1.2 %。研究了裂缝尖端附近三维应力分布 ,及沿厚度方向的应力分布。结果表明 :应力集中区常处于三向受拉状态 ,其塑性发展受到限制 ,因而极易发生脆性破坏  相似文献   

8.
掌子面推进过程围岩应力及裂隙发育规律   总被引:2,自引:0,他引:2  
利用数值分析软件,借鉴Griffith裂隙优势发育角度理论,对锦屏二级水电站施工排水洞SK11+000桩号段掌子面推进围岩应力量值、方向及裂隙优势发育规律动态变化过程进行研究.研究结果表明:开挖至监测面一倍洞径(D)距离时,最大主应力及主应力差值开始增加;穿过监测面时,中主应力及最小主应力突然降低,表现明显卸荷特征;穿过监测面后,洞壁不同部位围岩最大主应力分别表现增加与减小不同变化,2倍洞径距离(2D)后主应力量值基本趋于弹性力学解析解.掌子面推进过程中侧壁最大主应力倾角变化不大,一般保持90°左右,仅在0.25D范围内发生较小变化,到达监测面附近时倾向发生较大变化,穿过监测面后则逐渐发展至水平垂直洞轴方向;洞顶最大主应力倾向与倾角主要在掌子面接近监测面0.25D距离时开始变化,穿过监测面0.25D距离后,则基本保持竖直垂直洞轴方向.微裂隙优势发育角β随主应力大小变化而变化,侧壁围岩β一般减小,洞项不同部位岩体β存在减小及增大不同变化;研究结果可为工程区围岩裂隙化问题的研究及支护工程设计提供参考.  相似文献   

9.
断续节理的存在使围岩的稳定性、变形特征和应力分布更加复杂。基于颗粒流强度折减法,用PFC~(2D)分析不同倾角断续节理围岩的应力分布、变形特征及破坏模式。结果表明:随着节理倾角的增加,洞周应力集中的位置从倾角为0°时在洞左上、右下角逐渐逆时针旋转至倾角为90°时在洞两侧,同时节理间的应力分布从集中在对角线上逐渐变成均匀分布于整个岩块上,应力分布的不同最终导致围岩的破坏不同;节理与洞壁相交处位移较大,左右边墙中点位移受到断续节理倾角的影响远大于拱顶底中点位移受到的影响;断续节理倾角较小时,围岩损伤的范围更大且损伤更严重。为进一步了解在断续节理岩体中开挖洞室后围岩的破坏机理及采取相应的支护措施提供一定的指导。  相似文献   

10.
隧洞是建筑物引水系统的重要组成部分,地下隧洞开挖后深部围岩应力场的状态变化对预测围岩失稳和开裂具有十分重要的意义。本文讨论了围岩应力分析中的本构模型和围岩应力分析中M-C准则的应用,用RFPA软件对隧洞开挖过程中围岩的应力场分布进行了相关的数值模拟,很好地验证了理论上的一些结论。  相似文献   

11.
为研究高地应力软岩隧道超前平行导洞开挖对主洞影响,依托玉龙雪山隧道工程,基于现场长期监测数据,结合有限差分程序FLAC3D建立数值分析模型,研究超前平导对主洞围岩应力、围岩位移和塑性区分布的影响,明确主洞与平导间最优间距。研究结果表明:主洞开挖过程中,当掌子面与监测面距离为3.63倍主洞洞宽时,监测面拱顶沉降、上收敛、中收敛和下收敛值占最终变形值的80%以上,围岩变形稳定后上收敛值和中收敛值均大于拱顶沉降;平导超前开挖可有效改善主洞围岩应力环境,主洞与平导间距较大时,围岩应力改善效果不佳,随着二者间距逐渐减小,围岩应力改善效果逐渐增强,但主洞与平导间距过小时,二者开挖产生的塑性区会贯通,综合考虑,确定主洞与导洞最优间距为3.5倍导洞宽度;主洞拱顶沉降值和拱底隆起值随着主洞与平导间距的减小而增大,左右拱腰水平位移值随着主洞与平导间距的减小先减小后增大,当二者间距由5.0D减小至3.0D时,拱顶沉降值和拱底隆起值分别从-0.598m和0.426m增加至-0.679m和0.514m。  相似文献   

12.
作为一种大跨径地下结构形式连拱隧道结构复杂,无中导洞法能在提高施工速度的基础上降低中隔墙渗漏水。为研究连拱隧道无中导洞法施工活动对隧道先后行洞的影响程度,以陈家滩隧道为研究对象通过数值模拟,研究了不同间距下先后行洞的影响范围、先后行洞的影响程度以及中隔墙的倾覆趋势。结果表明:当先行洞开挖至控制截面5m范围内对围岩的影响最大,其围岩位移释放系数增量达到了40%以上;超过控制截面10 m时其围岩释放系数达到了93%以上,影响程度较小;超过20 m时影响程度可以忽略。当先后行洞纵向间距大于35 m时影响程度S值接近10%,纵向间距大于40 m时S值小于10%。从中隔墙的倾覆程度来看当先行洞开挖完成时,中隔墙的倾斜程度达到最大,倾斜角约为3.28×10-4;而纵向间距大于30 m时倾斜角差值为0.351×10-4,此时中隔墙倾斜程度较大极差较小,有利于中隔墙受力。故先后行洞开挖掌子面纵向间距建议控制在30 m~40 m左右。  相似文献   

13.
为研究圆形水工隧洞围岩弹塑性区受力特点,基于Mogi-Coulomb强度准则和弹塑性理论,考虑温度和衬砌结构的影响,推导热力耦合作用下水工隧洞围岩应力、洞壁位移和围岩塑性区半径的解析解。依托新疆某高地温水工隧洞工程进行计算分析,对中间主应力系数、温度、混凝土强度、衬砌厚度和围岩应力分布及塑性区半径间的关系展开参数分析。结果表明:温度变化产生的拉应力会使衬砌结构对围岩支反力减小,围岩塑性区半径和洞壁位移有所增大,隧洞岩体稳定性变差;中间主应力系数b对岩体强度影响较大,b=0.5时围岩塑性区半径明显小于不考虑中间主应力时的塑性区半径;提高混凝土强度和增加衬砌厚度在初始阶段都能明显限制围岩塑性区发展,虽后续效果都不佳,但增大衬砌厚度更能限制围岩塑性区发展。  相似文献   

14.
分析了冲击煤层上保护层开采过程中围岩应力演化规律,研究表明:在工作面开采前方0~20m范围煤岩体内纵向压力处于增长阶段,应力集中系数达到2.0,在20~60m为纵向压力逐步恢复阶段,应力集中系数达到1.7,应力集中峰值出现在工作面前方5m处左右,工作面开采50m之后,超前支撑压力有规律的呈现两次应力集中和两次应力释放现象;分析了保护层采空区及工作面下覆不同垂直高度处围岩应力随煤层开采进度演化规律,指出采空区纵向应力随采空区深入,呈现逐步增大趋势,在采空区两侧下方被保护层应力值升高幅度要大于其中间区域,保护层工作面的压实作用传递到被保护层工作面在空间上稍微滞后,这个滞后的距离在30~40m之间。  相似文献   

15.
将小净距隧道中岩柱塑性区不重叠的极限塑性区半径定义为塑性区贯穿半径,考虑中间主应力的影响,采用统一强度准则和Schwarz交替法,对小净距隧道的弹塑性状态进行分析,推导小净距隧道塑性区半径的解析表达式.通过算例,分析中间主应力、内摩擦角和黏聚力对理论解的影响.结果表明:当两隧道净距大于2.3倍的开挖半径时,两隧道之间的相互作用较小,塑性区半径趋于一个稳定值,稳定值比单孔隧道塑性区半径大17.7%,可近似按照单孔隧道进行处理;小净距隧的塑性区贯穿半径随着统一强度参数、内摩擦角和黏聚力的增大而减小;与同不考虑中间主应力作用相比,考虑中间主应力作用的塑性区贯穿半径减小9.19%~20.71%,充分发挥围岩的强度性能.  相似文献   

16.
以南岭铁路隧道原位扩建项目为工程背景,采用振弦式钻孔应力计监测隧道扩挖过程中围岩环向应力的变化.建立主洞与竖井交叉段扩挖过程的三维有限元模型,通过监测数据与模型结果对比,验证模型准确性,研究采用全断面法扩挖时围岩变形及应力随开挖过程的变化规律.在此基础上,分析扩挖方法和循环进尺对扩建稳定性的影响.结果表明:扩挖过程中,交叉点主洞拱脚和边墙的围岩环向应力表现为应力释放,通风竖井破坏了主洞的成拱效应;竖井与主洞交叉点相比于非交叉点,扩挖后隧道水平位移增大47.5%,隧道竖向位移增大29.3%,拱顶围岩应力由压应力转化为拉应力;采用全断面法扩挖对围岩的二次扰动程度更低,减小循环进尺也可有效提高扩挖施工的安全性.  相似文献   

17.
针对各向异性初始应力状态(不同的侧压力系数下)的岩体巷道开挖问题,利用复合材料的Hoffman强度准则考察各向异性对巷道周围应力、位移和塑性破坏区的影响.结果表明:巷道围岩的最大主应力与侧压系数无关,当θ=30°~60°时为最大,θ=0°,90°时为最小.随θ的增加,巷道围岩的水平位移增加,垂直位移减小.在各向异性岩体中强度较大的方向与最大应力方向一致时,破坏发生在此方向,塑性破坏区的范围为最大.  相似文献   

18.
为了深入研究复杂地质条件下大跨度双连拱隧道围岩稳定性及施工关键技术,以沪昆高速公路灯草塘隧道为依托工程,基于有限差分软件,建立灯草塘隧道实际地质模型,重点进行双向六车道连拱隧道邻近采煤空洞时的围岩稳定数值计算,结果表明:靠近空洞一侧的主洞水平位移及拱顶沉降均大于另一侧的,隧道底板隆起位移也存在同样的规律;空洞与隧道之间围岩最大主应力大部分为拉应力,靠近空洞侧隧洞围岩最大主应力与另一侧相比较差异明显,且空洞与隧道之间塑性区范围较大。另外,基于数值分析结果,结合隧道实际空洞情况,研究了Ⅵ级围岩条件下隧道附近采煤空洞的处置及围岩的加固技术。  相似文献   

19.
针对软岩巷道围岩在掘进过程中呈现出的顶板下沉量大、两帮收敛严重等特点,为解决巷道围岩稳定性控制的难题,以金能煤矿二采区1201工作面的运输顺槽为研究对象,基于工作面巷道工程地质条件,采用现场实测、数值模拟和工业性试验等方法,阐述了软岩巷道的变形破坏特征,提出了3种不同的围岩控制方案,利用FLAC3D软件模拟了该巷道围岩水平位移、垂直位移和塑性区分布情况,并进行现场测试。工程应用结果表明:“锚索+W钢带+U型钢+注浆”的支护方案效果明显,提高了围岩的承载能力,实现了巷道围岩的稳定性控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号