首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dosage compensation of the active X chromosome in mammals   总被引:20,自引:0,他引:20  
Monosomy of the X chromosome owing to divergence between the sex chromosomes leads to dosage compensation mechanisms to restore balanced expression between the X and the autosomes. In Drosophila melanogaster, upregulation of the male X leads to dosage compensation. It has been hypothesized that mammals likewise upregulate their active X chromosome. Together with X inactivation, this mechanism would maintain balanced expression between the X chromosome and autosomes and between the sexes. Here, we show that doubling of the global expression level of the X chromosome leads to dosage compensation in somatic tissues from several mammalian species. X-linked genes are highly expressed in brain tissues, consistent with a role in cognitive functions. Furthermore, the X chromosome is expressed but not upregulated in spermatids and secondary oocytes, preserving balanced expression of the genome in these haploid cells. Upon fertilization, upregulation of the active X must occur to achieve the observed dosage compensation in early embryos.  相似文献   

2.
According to the prevailing view, mammalian X chromosomes are enriched in spermatogenesis genes expressed before meiosis and deficient in spermatogenesis genes expressed after meiosis. The paucity of postmeiotic genes on the X chromosome has been interpreted as a consequence of meiotic sex chromosome inactivation (MSCI)--the complete silencing of genes on the XY bivalent at meiotic prophase. Recent studies have concluded that MSCI-initiated silencing persists beyond meiosis and that most genes on the X chromosome remain repressed in round spermatids. Here, we report that 33 multicopy gene families, representing approximately 273 mouse X-linked genes, are expressed in the testis and that this expression is predominantly in postmeiotic cells. RNA FISH and microarray analysis show that the maintenance of X chromosome postmeiotic repression is incomplete. Furthermore, X-linked multicopy genes exhibit a similar degree of expression as autosomal genes. Thus, not only is the mouse X chromosome enriched for spermatogenesis genes functioning before meiosis, but in addition, approximately 18% of mouse X-linked genes are expressed in postmeiotic cells.  相似文献   

3.
Cytosine methylation is required for mammalian development and is often perturbed in human cancer. To determine how this epigenetic modification is distributed in the genomes of primary and transformed cells, we used an immunocapturing approach followed by DNA microarray analysis to generate methylation profiles of all human chromosomes at 80-kb resolution and for a large set of CpG islands. In primary cells we identified broad genomic regions of differential methylation with higher levels in gene-rich neighborhoods. Female and male cells had indistinguishable profiles for autosomes but differences on the X chromosome. The inactive X chromosome (Xi) was hypermethylated at only a subset of gene-rich regions and, unexpectedly, overall hypomethylated relative to its active counterpart. The chromosomal methylation profile of transformed cells was similar to that of primary cells. Nevertheless, we detected large genomic segments with hypomethylation in the transformed cell residing in gene-poor areas. Furthermore, analysis of 6,000 CpG islands showed that only a small set of promoters was methylated differentially, suggesting that aberrant methylation of CpG island promoters in malignancy might be less frequent than previously hypothesized.  相似文献   

4.
We mapped regulatory loci for nearly all protein-coding genes in mammals using comparative genomic hybridization and expression array measurements from a panel of mouse-hamster radiation hybrid cell lines. The large number of breaks in the mouse chromosomes and the dense genotyping of the panel allowed extremely sharp mapping of loci. As the regulatory loci result from extra gene dosage, we call them copy number expression quantitative trait loci, or ceQTLs. The -2log10P support interval for the ceQTLs was <150 kb, containing an average of <2-3 genes. We identified 29,769 trans ceQTLs with -log10P > 4, including 13 hotspots each regulating >100 genes in trans. Further, this work identifies 2,761 trans ceQTLs harboring no known genes, and provides evidence for a mode of gene expression autoregulation specific to the X chromosome.  相似文献   

5.
Aberrant patterns of X chromosome inactivation in bovine clones   总被引:24,自引:0,他引:24  
  相似文献   

6.
Random monoallelic expression and asynchronous replication define an unusual class of autosomal mammalian genes. We show that every cell has randomly chosen either the maternal or paternal copy of each given autosome pair, such that alleles of these genes scattered across the chosen chromosome replicate earlier than the alleles on the homologous chromosome. Thus, chromosome-pair non-equivalence, rather than being limited to X-chromosome inactivation, is a fundamental property of mouse chromosomes.  相似文献   

7.
8.
The mammalian Y chromosome has unique characteristics compared with the autosomes or X chromosomes. Here we report the finished sequence of the chimpanzee Y chromosome (PTRY), including 271 kb of the Y-specific pseudoautosomal region 1 and 12.7 Mb of the male-specific region of the Y chromosome. Greater sequence divergence between the human Y chromosome (HSAY) and PTRY (1.78%) than between their respective whole genomes (1.23%) confirmed the accelerated evolutionary rate of the Y chromosome. Each of the 19 PTRY protein-coding genes analyzed had at least one nonsynonymous substitution, and 11 genes had higher nonsynonymous substitution rates than synonymous ones, suggesting relaxation of selective constraint, positive selection or both. We also identified lineage-specific changes, including deletion of a 200-kb fragment from the pericentromeric region of HSAY, expansion of young Alu families in HSAY and accumulation of young L1 elements and long terminal repeat retrotransposons in PTRY. Reconstruction of the common ancestral Y chromosome reflects the dynamic changes in our genomes in the 5-6 million years since speciation.  相似文献   

9.
The genome of the fission yeast, Schizosaccharomyces pombe, consists of some 14 million base pairs of DNA contained in three chromosomes. On account of its excellent genetics we used it as a test system for a strategy designed to map mammalian chromosomes and genomes. Data obtained from hybridization fingerprinting established an ordered library of 1,248 yeast artificial chromosome clones with an average size of 535 kilobases. The clones fall into three contigs completely representing the three chromosomes of the organism. This work provides a high resolution physical and clone map of the genome, which has been related to available genetic and physical map information.  相似文献   

10.
RNA sequencing shows no dosage compensation of the active X-chromosome   总被引:1,自引:0,他引:1  
Xiong Y  Chen X  Chen Z  Wang X  Shi S  Wang X  Zhang J  He X 《Nature genetics》2010,42(12):1043-1047
Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) ~1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of ~0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from ~1 in larvae to ~0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno’s hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes.  相似文献   

11.
Novel approaches to the structural and functional analysis of mammalian chromosomes would be possible if the gross structure of the chromosomes in living cells could be engineered. Controlled modifications can be engineered by conventional targeting techniques based on homologous recombination. Large but uncontrolled modifications can be made by the integration of cloned human telomeric DNA. We describe here the combined use of gene targeting and telomere-mediated chromosome breakage to generate a defined truncation of a human chromosome. Telomeric DNA was targeted to the 6-16 gene on the short arm of chromosome 1 in a human cell line. Molecular and cytogenetic analyses showed that, of eight targeted clones that were isolated, one clone had the predicted truncation of chromosome 1.  相似文献   

12.
An abundance of X-linked genes expressed in spermatogonia   总被引:22,自引:0,他引:22  
Spermatogonia are the self-renewing, mitotic germ cells of the testis from which sperm arise by means of the differentiation pathway known as spermatogenesis. By contrast with hematopoietic and other mammalian stem-cell populations, which have been subjects of intense molecular genetic investigation, spermatogonia have remained largely unexplored at the molecular level. Here we describe a systematic search for genes expressed in mouse spermatogonia, but not in somatic tissues. We identified 25 genes (19 of which are novel) that are expressed in only male germ cells. Of the 25 genes, 3 are Y-linked and 10 are X-linked. If these genes had been distributed randomly in the genome, one would have expected zero to two of the genes to be X-linked. Our findings indicate that the X chromosome has a predominant role in pre-meiotic stages of mammalian spermatogenesis. We hypothesize that the X chromosome acquired this prominent role in male germ-cell development as it evolved from an ordinary, unspecialized autosome.  相似文献   

13.
Embryonic stem (ES) cells are important tools in the study of gene function and may also become important in cell therapy applications. Establishment of stable XX ES cell lines from mouse blastocysts is relatively problematic owing to frequent loss of one of the two X chromosomes. Here we show that DNA methylation is globally reduced in XX ES cell lines and that this is attributable to the presence of two active X chromosomes. Hypomethylation affects both repetitive and unique sequences, the latter including differentially methylated regions that regulate expression of parentally imprinted genes. Methylation of differentially methylated regions can be restored coincident with elimination of an X chromosome in early-passage parthenogenetic ES cells, suggesting that selection against loss of methylation may provide the basis for X-chromosome instability. Finally, we show that hypomethylation is associated with reduced levels of the de novo DNA methyltransferases Dnmt3a and Dnmt3b and that ectopic expression of these factors restores global methylation levels.  相似文献   

14.
Sex chromosomes are subject to sex-specific selective evolutionary forces. One model predicts that genes with sex-biased expression should be enriched on the X chromosome. In agreement with Rice's hypothesis, spermatogonial genes are over-represented on the X chromosome of mice and sex- and reproduction-related genes are over-represented on the human X chromosome. Male-biased genes are under-represented on the X chromosome in worms and flies, however. Here we show that mouse spermatogenesis genes are relatively under-represented on the X chromosome and female-biased genes are enriched on it. We used Spo11(-/-) mice blocked in spermatogenesis early in meiosis to evaluate the temporal pattern of gene expression in sperm development. Genes expressed before the Spo11 block are enriched on the X chromosome, whereas those expressed later in spermatogenesis are depleted. Inactivation of the X chromosome in male meiosis may be a universal driving force for X-chromosome demasculinization.  相似文献   

15.
The mutation responsible for fragile X syndrome and myotonic dystrophy involves the amplification of a simple trinucleotide repeat sequence, which increases in successive generations of affected pedigrees accounting for increasing penetrance of both disorders. This common molecular basis suggests that the two diseases may share other genetic features, but whereas myotonic dystrophy exhibits a significant founder chromosome effect, fragile X syndrome apparently has a very high mutation frequency. By haplotype analysis of microsatellite markers which flank the fragile X unstable element, we have uncovered evidence of founder chromosomes of the fragile X 'mutation'. Disorders caused by heritable unstable elements may therefore exhibit common genetic properties including anticipation and founder chromosomes.  相似文献   

16.
The gene encoding the granulocyte macrophage colony stimulating factor receptor alpha subunit (CSF2RA) has previously been mapped to the pseudoautosomal region of the human sex chromosomes. In contrast, we report that the murine locus, Csf2ra, maps to an autosome in the laboratory mouse. By in situ hybridization and genetic mapping, Csf2ra maps at telomeric band D2 of mouse chromosome 19. This first instance of a pseudoautosomal locus in human being autosomal in mouse, indicates incomplete conservation between the human and mouse X chromosomes and suggests that the genetic content of the pseudoautosomal region may differ between species of eutherian mammals due to chromosomal rearrangements.  相似文献   

17.
18.
The recently identified gene for X-linked Kallmann syndrome (hypogonadotropic hypogonadism and anosmia) has a closely related homologue on the Y chromosome. The X and Y copies of this gene are located in a large region of X/Y homology, on Xp22.3 and Yq11.2, respectively. Comparison of the structure of the X-linked Kallmann syndrome gene and its Y homologue shed light on the evolutionary history of this region of the human sex chromosomes. Our data show that the Y homologue is not functional. Comparative analysis of X/Y sequence identity at several loci on Xp22.3 and Yq11.2 suggests that the homology between these two regions is the result of a complex series of events which occurred in the recent evolution of sex chromosomes.  相似文献   

19.
Lee JT 《Nature genetics》2002,32(1):195-200
Tsix controls X-chromosome inactivation (XCI) by blocking the accumulation of Xist RNA on the future active X chromosome. Deleting Tsix on one X chromosome (X(Delta)X) skews XCI toward the mutated X chromosome in the female soma. Here I have generated homozygous Tsix-null mice (X(Delta)X(Delta)) to test how deleting the second allele affects the choice of XCI. Homozygosity leads to extremely low fertility and reveals two previously unknown non-mendelian patterns of inheritance. First, the sex ratio is skewed against female births so that one daughter is born for every two to three sons. Second, the pattern of XCI unexpectedly returns to random in surviving X(Delta)X(Delta) mice. Thus, with respect to choice, mutation of Tsix yields a phenotypic abnormality in heterozygotes but not homozygotes. To reconcile the paradox of female loss with apparent reversion to random choice, I propose that deleting both Tsix alleles results in chaotic choice and that randomness in X(Delta)X(Delta) survivors reflects a fortuitous selection of distinct X chromosomes as active and inactive.  相似文献   

20.
Studies of histone methylation have shown that H3 can be methylated at lysine 4 (Lys4) or lysine 9 (Lys9). Whereas H3-Lys4 methylation has been correlated with active gene expression, H3-Lys9 methylation has been linked to gene silencing and assembly of heterochromatin in mouse and Schizosaccharomyces pombe. The chromodomain of mouse HP1 (and Swi6 in S. pombe) binds H3 methylated at Lys9, and methylation at this site is thought to mark and promote heterochromatin assembly. We have used a well-studied model of mammalian epigenetic silencing, the human inactive X chromosome, to show that enrichment for H3 methylated at Lys9 is also a distinguishing mark of facultative heterochromatin. In contrast, H3 methylated at Lys4 is depleted in the inactive X chromosome, except in three 'hot spots' of enrichment along its length. Chromatin immunoprecipitation analyses further show that Lys9 methylation is associated with promoters of inactive genes, whereas Lys4 methylation is associated with active genes on the X chromosome. These data demonstrate that differential methylation at two distinct sites of the H3 amino terminus correlates with contrasting gene activities and may be part of a 'histone code' involved in establishing and maintaining facultative heterochromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号