首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
K Kajiwara  L B Hahn  S Mukai  G H Travis  E L Berson  T P Dryja 《Nature》1991,354(6353):480-483
The murine retinal degeneration slow (rds) gene is a semidominant mutation with a phenotype having rod and cone photoreceptors that develop abnormally and then slowly degenerate. The phenotype is a possible model for retinitis pigmentosa, one of the scores of hereditary human retinal degenerations, which is also characterized by photoreceptor degeneration. We report here three mutations of the human homologue of the rds gene (RDS) that cosegregate with autosomal dominant retinitis pigmentosa in separate families. Our results indicate that some cases of autosomal dominant retinitis pigmentosa are due to mutations at the RDS locus.  相似文献   

2.
C Bowes  T Li  M Danciger  L C Baxter  M L Applebury  D B Farber 《Nature》1990,347(6294):677-680
Mice homozygous for the rd mutation display hereditary retinal degeneration and the classic rd lines serve as a model for human retinitis pigmentosa. In affected animals the retinal rod photoreceptor cells begin degenerating at about postnatal day 8, and by four weeks no photoreceptors are left. Degeneration is preceded by accumulation of cyclic GMP in the retina and is correlated with deficient activity of the rod photoreceptor cGMP-phosphodiesterase. We have recently isolated a candidate complementary DNA for the rd gene from a mouse retinal library and completed the characterization of cDNAs encoding all subunits of bovine photoreceptor phosphodiesterase. The candidate cDNA shows strong homology with a cDNA encoding the bovine phosphodiesterase beta subunit. Here we present evidence that the candidate cDNA is the murine homologue of bovine phosphodiesterase beta cDNA. We conclude that the mouse rd locus encodes the rod photoreceptor cGMP-phosphodiesterase beta subunit.  相似文献   

3.
4.
Numerous inherited retinal degenerations exist in animals and humans, in which photoreceptors inexplicably degenerate and disappear. In RCS rats with inherited retinal dystrophy, the mutant gene is expressed in the retinal pigment epithelial (RPE) cell, and leads to the loss of photoreceptor cells. Photoreceptors can be rescued from degeneration if they are juxtaposed to wild-type RPE cells in experimental chimaeras or by the transplantation of RPE cells from normal rats. In both cases, the rescue effect extends beyond the immediate boundaries of the normal RPE cells, suggesting trophic action of a diffusible factor(s) from the normal RPE cells. We considered that the fibroblast growth factors, aFGF and bFGF, might have such a trophic role as they are found in the retina and RPE cells; bFGF acts as a neurotrophic agent after axonal injury in several regions of the central nervous system, and bFGF induces retinal regeneration from developing RPE cells. Here we report that subretinal injection of bFGF results in extensive rescue of photoreceptors in RCS rats for at least two months after the injection, and that intravitreal injection of bFGF results in even more widespread rescue, across almost the entire retina. The findings demonstrate for the first time that bFGF can act as a survival-promoting neurotrophic factor in a hereditary neuronal degeneration of the central nervous system.  相似文献   

5.
Cell transplantation is a potential strategy for treating blindness caused by the loss of photoreceptors. Although transplanted rod-precursor cells are able to migrate into the adult retina and differentiate to acquire the specialized morphological features of mature photoreceptor cells, the fundamental question remains whether transplantation of photoreceptor cells can actually improve vision. Here we provide evidence of functional rod-mediated vision after photoreceptor transplantation in adult Gnat1?/? mice, which lack rod function and are a model of congenital stationary night blindness. We show that transplanted rod precursors form classic triad synaptic connections with second-order bipolar and horizontal cells in the recipient retina. The newly integrated photoreceptor cells are light-responsive with dim-flash kinetics similar to adult wild-type photoreceptors. By using intrinsic imaging under scotopic conditions we demonstrate that visual signals generated by transplanted rods are projected to higher visual areas, including V1. Moreover, these cells are capable of driving optokinetic head tracking and visually guided behaviour in the Gnat1?/? mouse under scotopic conditions. Together, these results demonstrate the feasibility of photoreceptor transplantation as a therapeutic strategy for restoring vision after retinal degeneration.  相似文献   

6.
Izaddoost S  Nam SC  Bhat MA  Bellen HJ  Choi KW 《Nature》2002,416(6877):178-183
Drosophila Crumbs (Crb) is required for apical-basal polarity and is an apical determinant in embryonic epithelia. Here, we describe properties of Crb that control the position and integrity of the photoreceptor adherens junction and photosensitive organ, or rhabdomere. In contrast to normal photoreceptor adherens junctions and rhabdomeres, which span the depth of the retina, adherens junctions and rhabdomeres of Crb-deficient photoreceptors initially accumulate at the top of the retina and fail to maintain their integrity as they stretch to the retinal floor. We show that Crb controls localization of the adherens junction through its intracellular domain containing a putative binding site for a protein 4.1 superfamily protein (FERM). Although loss of Crb or overexpression of the FERM binding domain causes mislocalization of adherens junctions, they do not result in a significant loss of photoreceptor polarity. Mutations in CRB1, a human homologue of crb, are associated with photoreceptor degeneration in retinitis pigmentosa 12 (RP12) and Leber congenital amaurosis (LCA). The intracellular domain of CRB1 behaves similarly to its Drosophila counterpart when overexpressed in the fly eye. Our studies may provide clues for mechanisms of photoreceptor degeneration in RP12 and LCA.  相似文献   

7.
8.
9.
Sensory systems with high discriminatory power use neurons that express only one of several alternative sensory receptor proteins. This exclusive receptor gene expression restricts the sensitivity spectrum of neurons and is coordinated with the choice of their synaptic targets. However, little is known about how it is maintained throughout the life of a neuron. Here we show that the green-light sensing receptor rhodopsin 6 (Rh6) acts to exclude an alternative blue-sensitive rhodopsin 5 (Rh5) from a subset of Drosophila R8 photoreceptor neurons. Loss of Rh6 leads to a gradual expansion of Rh5 expression into all R8 photoreceptors of the ageing adult retina. The Rh6 feedback signal results in repression of the rh5 promoter and can be mimicked by other Drosophila rhodopsins; it is partly dependent on activation of rhodopsin by light, and relies on G(αq) activity, but not on the subsequent steps of the phototransduction cascade. Our observations reveal a thus far unappreciated spectral plasticity of R8 photoreceptors, and identify rhodopsin feedback as an exclusion mechanism.  相似文献   

10.
K Kiel-Metzger  R P Erickson 《Nature》1984,310(5978):579-581
Development and fertility in the mouse are known to be influenced by loci mapped to the T/t complex of chromosome 17. Recent evidence suggests that one or more genes near this region may also be associated with sex determination. Washburn and Eicher recently reported partial to complete sex reversal with the Thp deletion on some genetic backgrounds and suggest that this result may be due to a primary sex-determining locus (Tas) that is closely linked to, or a part of, the T locus. Sex-specific, Bkm (banded Krait minor satellite DNA)-related sequences are known to have autosomal as well as heterogametic sex chromosomal copies, but specific regions of autosomal localization have not been described. We now demonstrate the presence of chromosome Y-related DNA sequences on proximal chromosome 17 in Sex-reversed (Sxr) and normal mice using in situ hybridization of mitotic chromosomes with 3H-labelled pCS316 (ref. 4), a probe that shows major hybridization to the proximal portion of the mouse chromosome Y. These data, and those of Washburn and Eicher, argue for a gene(s) related to sex determination or differentiation within the proximal portion of mouse chromosome 17.  相似文献   

11.
R Nusse  A van Ooyen  D Cox  Y K Fung  H Varmus 《Nature》1984,307(5947):131-136
  相似文献   

12.
A point mutation of the rhodopsin gene in one form of retinitis pigmentosa   总被引:78,自引:0,他引:78  
The gene for autosomal dominant retinitis pigmentosa in a large pedigree of Irish origin has recently been found to be linked to an anonymous polymorphic sequence, D3S47 (C17), from the long arm of chromosome 3. As the gene coding for rhodopsin is also assigned to the long arm of chromosome 3 and is expressed in rod photoreceptors that are affected early in this blinding disease, we searched for a mutation of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. We found a C----A transversion in codon 23 (corresponding to a proline----histidine substitution) in 17 of 148 unrelated patients and not in any of 102 unaffected individuals. This result, coupled with the fact that the proline normally present at position 23 is highly conserved among the opsins and related G-protein receptors, indicates that this mutation could be the cause of one form of autosomal dominant retinitis pigmentosa.  相似文献   

13.
M M Slaughter  R F Miller 《Nature》1983,303(5917):537-538
The bipolar cells of the vertebrate retina are the principal neuronal elements which transmit photoreceptor activity from the outer to the inner retina. An important function of the bipolars is to segregate photoreceptor input into independent ON and OFF channels which are subserved, respectively, by the depolarizing and hyperpolarizing bipolar subtypes. Ultrastructural and physiological observations suggest that chemical neurotransmission is the predominant means of bipolar input to the inner retina. Both ON and OFF bipolars apparently release excitatory transmitters. Histological studies with cytotoxic agents and physiological studies indicate that third-order neurones have excitatory amino acid receptors. In ON-OFF amacrine and ganglion cells, which receive input from both bipolars, ON and OFF excitation have a similar ionic basis, suggesting that the same transmitter may be released by both types of bipolars. We have now found that (+/-)cis-2,3-piperidine dicarboxylic acid (PDA), a new excitatory amino acid antagonist, blocks bipolar input to the inner retina and thus suggests that an excitatory amino acid is a bipolar cell transmitter.  相似文献   

14.
P Koopman  J Gubbay  J Collignon  R Lovell-Badge 《Nature》1989,342(6252):940-942
The Y chromosome determines maleness in mammals. A Y chromosome-linked gene diverts the indifferent embryonic gonad from the default ovarian pathway in favour of testis differentiation, initiating male development. Study of this basic developmental switch requires the isolation of the testis-determining gene, termed TDF in humans and Tdy in mice. ZFY, a candidate gene for TDF, potentially encodes a zinc-finger protein, and has two Y-linked homologues, Zfy-1 and Zfy-2, in mice. Although ZFY, Zfy-1 and Zfy-2 seem to map to the sex-determining regions of the human and mouse Y chromosomes, there is no direct evidence that these genes are involved in testis determination. We report here that Zfy-1 but not Zfy-2 is expressed in differentiating embryonic mouse testes. Neither gene, however, is expressed in We/We mutant embryonic testes which lack germ cells. These observations exclude both Zfy-1 and Zfy-2 as candidates for the mouse testis-determining gene.  相似文献   

15.
R Feiler  W A Harris  K Kirschfeld  C Wehrhahn  C S Zuker 《Nature》1988,333(6175):737-741
Drosophila mutants transformed with a chimaeric gene that expresses the ocellar visual pigment in the major class of photoreceptor cells of the retina were used to investigate the properties of this minor pigment. The photoreceptor cells in which this opsin was misexpressed showed new spectral characteristics and physiology.  相似文献   

16.
P J Dyson  A M Knight  S Fairchild  E Simpson  K Tomonari 《Nature》1991,349(6309):531-532
The T-cell receptor (TCR) repertoire is selected in the thymus after rearrangement of genes encoding TCR alpha and beta chains. Selection is based on the recognition by newly emergent T cells of self-ligands associated with molecules of the major histocompatibility complex: some combinations result in positive selection, others in negative selection. Negative selection, or clonal deletion, is an important mechanism for eliminating autoreactive T cells. A group of self-ligands involved in clonal deletion was identified because they, like exogenous superantigens, were recognized by almost all T cells expressing particular TCR V beta genes. V beta 17a T cells are deleted by a tissue-specific ligand; V beta 6, V beta 7, V beta 8.1 and V beta 9 T cells are deleted by the minor lymphocyte-stimulating (Mls) determinant Mls-1a; V beta 3 T cells by Mls-2a and Mls-3a; V beta 11 T cells by ligands encoded by independently segregating genes; and V beta 5 T cells by ligands encoded by two genes. Chromosome mapping using recombinant inbred strains of mice and classic backcrosses show that Mls-1a in DBA/2 mice is encoded on chromosome 1, that one of the two ligand genes for deletion of V beta 5 T cells maps to chromosome 12 and that a ligand gene for V beta 11 deletion is linked to the CD8 locus on chromosome 6. Here we present evidence from three sets of backcross mice for concordance between V beta 11 deletion ligand genes on chromosomes 6, 12 and 14 and endogenous mouse mammary tumour virus integrant (Mtv) genomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Mice carrying mutations at the W locus located on chromosome 5 are characterized by severe macrocytic anaemia, lack of hair pigmentation and sterility. Mutations at this locus appear to affect the proliferation and/or migration of cells during early embryogenesis and result in an intrinsic defect in the haematopoietic stem cell hierarchy. An understanding of the molecular basis of the complex and pleiotropic phenotype in W mutant mice would thus provide insights into the important developmental processes of gametogenesis, melanogenesis and haematopoiesis. Here we show that the mouse mutant W has a deletion of the c-kit proto-oncogene. Interspecific backcross analysis demonstrates that the W locus is very tightly linked to c-kit and that the two loci cannot be segregated at this level of analysis. c-kit is the cellular homologue of the oncogene v-kit of the HZ4 feline sarcoma virus and encodes a transmembrane protein tyrosine kinase receptor that is structurally similar to the receptors for colony-stimulating factor-1 (CSF-1) and platelet derived growth factor. The co-localization of c-kit with W provides a molecular entry into this important region of the mouse genome. In addition, these observations provide the first example of a germ-line mutation in a mammalian proto-oncogene and implicate the c-kit gene as a candidate for the W locus.  相似文献   

19.
The striking number of human and murine immunodeficiency disorders which map to the X chromosome suggests that genes localized on this chromosome must have important roles in lymphocyte development. At least seven distinct disorders in the human and two in the mouse disrupt lymphocyte maturation, particularly that of B cells, at characteristic stages. As functional genes mapping to the X chromosome in one mammal are found on the X chromosome in all other mammals, the same genes regulating lymphocyte development are expected to be found on the X chromosome in mouse and man. Investigations into the possible mechanisms of these X-linked disorders have been hampered by the lack of molecular probes for the genes or gene products affected; because of this, and the possibility of correlating one or more of the several hundred B- or T-cell-specific genes with a specific mutation, we surveyed 15 different B- and T-cell-specific cDNA clones for localization to the X chromosome. We report here the characterization of one of these murine cDNA clones, which hybridizes with a large, X-linked gene family, designated XLR (X-linked, lymphocyte-regulated). We show that the XLR gene family is closely linked to the X-linked immunodeficiency described in the CBA/N mouse strain (xid), by restriction fragment length polymorphism (RFLP) analysis of DNA from mice congeneic for xid. This finding, together with data on the expression of the XLR locus in B cells, indicates that this gene family either includes the locus defined by the xid mutation or is adjacent to it in a gene complex which may be important in lymphocyte differentiation.  相似文献   

20.
Evidence that recessive cellular alleles at specific chromosomal loci are involved in tumorigenesis has been recently shown by work on tissues from patients with retinoblastoma, a neoplasm of embryonic retina whose predisposition is inherited as an autosomal dominant trait. A comparison of germ-line and tumour genotypes at loci on human chromosome 13, defined by restriction fragment length polymorphisms, showed that loss of the chromosome bearing the wild-type allele at the Rb-1 locus occurred frequently in the development of retinoblastoma. We report here results of similar studies of another embryonal neoplasm, Wilms' tumour of the kidney. Examination of germ-line and tumour genotypes from seven patients showed that five cases were consistent with the presence on human chromosome 11 of a locus in which recessive mutational events are expressed after abnormal chromosomal segregation events during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号