首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Olfactory sensory neurons detect an enormous variety of small volatile molecules with extremely high sensitivity and specificity. The actual recognition and discrimination of odorous compounds is accomplished by specific receptor proteins located in the ciliary membrane of the sensory neurons. Axonal connections into the olfactory bulb, the first relay station for odor processing in the brain, are organized such that all neurons expressing the same odorant receptor converge their axons onto common glomeruli which are located at similar positions in all individuals from one species. For the establishment of this precise targeting of olfactory axons to their appropriate glomeruli, combinatorial functions of axon-associated cell adhesion molecules and odorant receptor proteins appear to be required. Odorants that stimulate distinct receptor cell populations will thereby activate a specific combination of glomeruli in the bulb; this characteristic activity pattern may be used by the system to encode the quality of a particular odorant.  相似文献   

2.
The mammalian olfactory system has the unique property in the permanent turnover of the olfactory sensory neurons under normal conditions and following injury. This implies that the topographical map of the epithelium-to-bulb connections generated during ontogenesis has to be maintained despite neuron renewal in order to insure olfactory information processing. One way to investigate this issue has been to disrupt the peripheral connections and analyze how neural connections may be reestablished as well as how animals may perform in olfactory-mediated tasks. This review surveys the main data pertaining to both morphological and functional recoveries taking place in the peripheral olfactory system following olfactory bulb deafferentation. Conclusions from these studies are enlightened by recent data from molecular biology.  相似文献   

3.
E Ramon-Moliner 《Experientia》1977,33(10):1342-1344
Images with apparently gemmulofugal polarity in the EPL of the olfactory bulb are the result of sectioning, along misleading planes, gemmulopetal synapses containing postsynaptic vesicles. Unless one accepts a bidirectional conduction for chemical synapses, the internal granule cells lack actual gemmulofugal synapses and the neurotransmitter contained on their vesicles must act at non-synaptic membranes.  相似文献   

4.
The growth and guidance of primary olfactory axons are partly attributed to the presence of olfactory ensheathing cells (OECs). However, little is understood about the differences between the subpopulations of OECs and what regulates their interactions. We used OEC-axon assays and determined that axons respond differently to peripheral and central OECs. We then further purified OECs from anatomically distinct regions of the olfactory bulb. Cell behaviour assays revealed that OECs from the olfactory bulb were a functionally heterogeneous population with distinct differences which is consistent with their proposed roles in vivo. We found that the heterogeneity was regulated by motile lamellipodial waves along the shaft of the OECs and that inhibition of lamellipodial wave activity via Mek1 abolished the ability of the cells to distinguish between each other. These results demonstrate that OECs from the olfactory bulb are a heterogeneous population that use lamellipodial waves to regulate cell–cell recognition.  相似文献   

5.
Summary Images with apparently gemmulofugal polarity in the EPL of the olfactory bulb are the result of sectioning, along misleading planes, gemmulopetal synapses containing postsynaptic vesicles. Unless one accepts a bidirectional conduction for chemical synapses, the internal granule cells lack actual gemmulofugal synapses and the neurotransmitter contained in their vesicles must act at non-synaptic membranes.Supported by grant MA4183 of the Medical Research Council of Canada.  相似文献   

6.
It has been accepted that new neurons are added to the olfactory bulb and the hippocampal dentate gyrus throughout life in the healthy adult mammalian brain. Recent studies have clarified that brain insult raises the proliferation of neural stem cells/neural progenitor cells existing in the subventricular zone and the subgranular zone, which become sources of new neurons for the olfactory bulb and the dentate gyrus, respectively. Interestingly, convincing data has shown that brain insult invokes neurogenesis in various brain regions, such as the hippocampal cornu ammonis region, striatum, and cortex. These reports suggest that neural stem cells/neural progenitor cells, which can be activated by brain injury, might be broadly located in the adult brain or that new neurons may migrate widely from the neurogenic regions. This review focuses on brain insult-induced neurogenesis in the mammalian forebrain, especially in the neocortex.  相似文献   

7.
When odorants bind to the sensory cilia of olfactory sensory neurons, the cells respond with an electrical output signal, typically a short train of action potentials. This review describes the present state of knowledge about the olfactory signal transduction process. In the last decade, a set of transduction molecules has been identified which help to explain many aspects of the sensory response. Odor-induced second-messenger production, activation of transduction channels, the central role of the ciliary Ca2+ concentration, as well as mechanisms that mediate adaptation, are all qualitatively understood on the basis of a consistent scheme for chemoelectrical transduction. This scheme, although necessarily incomplete, can serve as a working model for further experimentation which may reveal kinetical aspects of signal transduction processes in olfactory sensory neurons.  相似文献   

8.
The mammalian olfactory system is not uniformly organized but consists of several subsystems each of which probably serves distinct functions. Not only are the two major nasal chemosensory systems, the vomeronasal organ and the main olfactory epithelium, structurally and functionally separate entities, but the latter is further subcompartimentalized into overlapping expression zones and projection-related subzones. Moreover, the populations of ‘OR37’ neurons not only express a unique type of olfactory receptors but also are segregated in a cluster-like manner and generally project to only one receptor-specific glomerulus. The septal organ is an island of sensory epithelium on the nasal septum positioned at the nasoplatine duct; it is considered as a ‘mini-nose’ with dual function. A specific chemosensory function of the most recently discovered subsystem, the so-called Grueneberg ganglion, is based on the expression of olfactory marker protein and the axonal projections to defined glomeruli within the olfactory bulb. This complexity of distinct olfactory subsystems may be one of the features determining the enormous chemosensory capacity of the sense of smell.  相似文献   

9.
F Shafa 《Experientia》1979,35(7):880-881
Evidence presented here suggests that glomerulus formation within the olfactory bulb of the rat, which is mostly a postnatal event, is directed by the olfactory nerve rather than by the influences of mitral and tufted cells.  相似文献   

10.
The olfactory sense detects and distinguishes a multitude of different odors. Recent progress in molecular as well as physiological approaches has elucidated basic principles of neuronal encoding of odorants, common to insects and vertebrates. The construction of neuronal representations for odors begins with the task of mapping the multidimensional odor space onto the two-dimensional sensory surface, and subsequently onto the olfactory bulb or antennal lobe. A distributed expression of odorant receptors, albeit restricted to subregions of the sensory surface (large, intermediate or small for zebrafish, mouse or drosophila, respectively), ensures a robust representation, insensitive to mechanical insult. Olfactory receptor neurons expressing the same odorant receptors converge to form a receptotopic map in the olfactory bulb or antennal lobe. The emerging coding principle is a chemotopic representation of odorants at the first brain level, realized either as combinatorial or as monospecific representation, depending on the odorant.  相似文献   

11.
Summary Evidence presented here suggests that glomerulus formation within the olfactory bulb of the rat, which is mostly a postnatal event, is directed by the olfactory nerve rather than by the influences of mitral and tufted cells.I am grateful to Miss Sekineh Hamedi and Mr Davood Ahmadi for their assistance and to Dr Esmail Meisami for critical discussion of the topic. Reprint requests should be addressed to: 140 Flora Avenue, Apt. 133, Walnut Creek (California 94595, USA).  相似文献   

12.
In addition to the main olfactory system, many vertebrates possess a vomeronasal system that conveys more specialized chemosensory information. Unlike the airborne, volatile stimuli detected by the main olfactory system, vomeronasal stimuli are typically proteins of the lipocalin family which bind small, volatile ligands. Despite the smaller number of vomeronasal receptor types, the projection patterns of the vomeronasal receptor neurons to multiple glomeruli in the accessory olfactory bulb appear to be more complicated than those of the main olfactory system. The vomeronasal system has a direct sub-neocortical projection to hypothalamic areas that mediates specific behavioural and hormonal responses to pheromonal stimuli. However, the integration and transmission of this information can be modulated by learning mechanisms. The aim of this article is to outline some of the functions of the vomeronasal system, and in particular to comment on recent advances in our understanding of how vomeronasal information is coded and processed.  相似文献   

13.
In contrast to the single sensory surface present in teleost fishes, several spatially segregated subsystems with distinct molecular and functional characteristics define the mammalian olfactory system. However, the evolutionary steps of that transition remain unknown. Here we analyzed the olfactory system of an early diverging tetrapod, the amphibian Xenopus laevis, and report for the first time the existence of two odor-processing streams, sharply segregated in the main olfactory bulb and partially segregated in the olfactory epithelium of pre-metamorphic larvae. A lateral odor-processing stream is formed by microvillous receptor neurons and is characterized by amino acid responses and Gαo/Gαi as probable signal transducers, whereas a medial stream formed by ciliated receptor neurons is characterized by responses to alcohols, aldehydes, and ketones, and Gαolf/cAMP as probable signal transducers. To reveal candidates for the olfactory receptors underlying these two streams, the spatial distribution of 12 genes from four olfactory receptor gene families was determined. Several class II and some class I odorant receptors (ORs) mimic the spatial distribution observed for the medial stream, whereas a trace amine-associated receptor closely parallels the spatial pattern of the lateral odor-processing stream. Other olfactory receptors (some class I odorant receptors and vomeronasal type 1 receptors) and odor responses (to bile acids, amines) were not lateralized, the latter not even in the olfactory bulb, suggesting an incomplete segregation. Thus, the olfactory system of X. laevis exhibits an intermediate stage of segregation and as such appears well suited to investigate the molecular driving forces behind olfactory regionalization.  相似文献   

14.
The autoradiographic method has been used in the Rat to map active regions in the olfactory bulb after a pulse of 14C-2-deoxyglucose with electrical stimulation of the lateral olfactory tract. The highest optical densities were found at the external plexiform, mitral, internal plexiform and granular layers; the lowest was found in the glomerular layer.  相似文献   

15.
The brain transforms clues from the external world, the sensory stimuli, into activities in neuroglial networks. These circuits are activated in specialized sensory cortices where specific functional modules are responsible for the spatiotemporal coding of the stimulus. A major challenge in the neuroscience field has been to image the spatial distribution and follow the temporal dynamics of the activation of such large populations in vivo. Functional imaging techniques developed in the last 30 years have enabled researchers to solve this critical issue, and are reviewed here. These techniques utilize sources of contrast of radioisotopic, magnetic and optical origins and exploit two major families of signals to image sensory activity: the first class uses sources linked to cellular energy metabolism and hemodynamics, while the second involves exogenous indicators of neuronal activity. The whole panel of imaging techniques has fostered the functional exploration of the olfactory bulb which is one of the most studied sensory structures. We summarize the major results obtained using these techniques that describe the spatial and temporal activity patterns in the olfactory glomeruli, the first relay of olfactory information processing in the main olfactory bulb. We conclude this review by describing promising technical developments in optical imaging and future directions in the study of olfactory spatiotemporal coding.  相似文献   

16.
Axons of primary olfactory neurons are intimately associated with olfactory ensheathing cells (OECs) from the olfactory epithelium until the final targeting of axons within the olfactory bulb. However, little is understood about the nature and role of interactions between OECs and axons during development of the olfactory nerve pathway. We have used high resolution time-lapse microscopy to examine the growth and interactions of olfactory axons and OECs in vitro. Transgenic mice expressing fluorescent reporters in primary olfactory axons (OMP-ZsGreen) and ensheathing cells (S100ß-DsRed) enabled us to selectively analyse these cell types in explants of olfactory epithelium. We reveal here that rather than providing only a permissive substrate for axon growth, OECs play an active role in modulating the growth of pioneer olfactory axons. We show that the interactions between OECs and axons were dependent on lamellipodial waves on the shaft of OEC processes. The motility of OECs was mediated by GDNF, which stimulated cell migration and increased the apparent motility of the axons, whereas loss of OECs via laser ablation of the cells inhibited olfactory axon outgrowth. These results demonstrate that the migration of OECs strongly regulates the motility of axons and that stimulation of OEC motility enhances axon extension and growth cone activity.  相似文献   

17.
The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.  相似文献   

18.
In the mouse olfactory system, odorants are detected by ~1,000 different odorant receptors (ORs) produced by olfactory sensory neurons (OSNs). Each OSN expresses only one functional OR species, which is referred to as the “one neuron–one receptor” rule. Furthermore, OSN axons bearing the same OR converge to a specific projection site in the olfactory bulb (OB) forming a glomerular structure, i.e., the “one glomerulus–one receptor” rule. Based on these basic rules, binding signals of odorants detected by OSNs are converted to topographic information of activated glomeruli in the OB. During development, the glomerular map is formed by the combination of two genetically programmed processes: one is OR-independent projection along the dorsal–ventral axis, and the other is OR-dependent projection along the anterior-posterior axis. The map is further refined in an activity-dependent manner during the neonatal period. Here, we summarize recent progress of neural map formation in the mouse olfactory system.  相似文献   

19.
All olfactory receptors identified in teleost fish are expressed in a single sensory surface, whereas mammalian olfactory receptor gene families segregate into different olfactory organs, chief among them the main olfactory epithelium expressing ORs and TAARs, and the vomeronasal organ expressing V1Rs and V2Rs. A transitional stage is embodied by amphibians, with their vomeronasal organ expressing more ‘modern’, later diverging V2Rs, whereas more ‘ancient’, earlier diverging V2Rs are expressed in the main olfactory epithelium. During metamorphosis, the main olfactory epithelium of Xenopus tadpoles transforms into an air-filled cavity (principal cavity, air nose), whereas a newly formed cavity (middle cavity) takes over the function of a water nose. We report here that larval expression of ancient V2Rs is gradually lost from the main olfactory epithelium as it transforms into the air nose. Concomitantly, ancient v2r gene expression begins to appear in the basal layers of the newly forming water nose. We observe the same transition for responses to amino acid odorants, consistent with the hypothesis that amino acid responses may be mediated by V2R receptors.  相似文献   

20.
The coding of olfactory stimuli across a wide range of organisms may rely on fundamentally similar mechanisms in which a complement of specific odorant receptors on olfactory sensory neurons respond differentially to airborne chemicals to initiate the process by which specific odors are perceived. The question that we address in this review is the role of specific neurons in mediating this sensory system—an identity code—relative to the role that temporally specific responses across many neurons play in producing an olfactory perception—a temporal code. While information coded in specific neurons may be converted into a temporal code, it is also possible that temporal codes exist in the absence of response specificity for any particular neuron or subset of neurons. We review the data supporting these ideas, and we discuss the research perspectives that could help to reveal the mechanisms by which odorants become perceptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号