首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The mechanism of replication of the simian virus 40 (SV40) genome closely resembles that of cellular chromosomes, thereby providing an excellent model system for examining the enzymatic requirements for DNA replication. Only one viral gene product, the large tumour antigen (large-T antigen), is required for viral replication, so the majority of replication enzymes must be cellular. Indeed, a number of enzymatic activities associated with replication and the S phase of the cell cycle are induced upon SV40 infection. Cell-free extracts derived from human cells, when supplemented with immunopurified SV40 large-T antigen support efficient replication of plasmids that contain the SV40 origin of DNA replication. Using this system, a cellular protein of relative molecular mass 36,000 (Mr = 36K) that is required for the elongation stage of SV40 DNA replication in vitro has been purified and identified as a known cell-cycle regulated protein, alternatively called the proliferating cell nuclear antigen (PCNA) or cyclin. It was noticed that, in its physical characteristics, PCNA closely resembles a protein that regulates the activity of calf thymus DNA polymerase-delta. Here we show that PCNA and the polymerase-delta auxiliary protein have similar electrophoretic behaviour and are both recognized by anti-PCNA human autoantibodies. More importantly, both proteins are functionally equivalent; they stimulate SV40 DNA replication in vitro and increase the processivity of calf thymus DNA polymerase-delta. These results implicate a novel animal cell DNA polymerase, DNA polymerase-delta, in the elongation stage of replicative DNA synthesis in vitro.  相似文献   

2.
Requirement for the replication protein SSB in human DNA excision repair   总被引:40,自引:0,他引:40  
D Coverley  M K Kenny  M Munn  W D Rupp  D P Lane  R D Wood 《Nature》1991,349(6309):538-541
Replication and repair are essential processes that maintain the continuity of the genetic material. Dissection of simian virus 40 (SV40) DNA replication has resulted in the identification of many eukaryotic replication proteins, but the biochemistry of the multienzyme process of DNA excision repair is less well defined. One protein that is absolutely required for semiconservative replication of SV40 DNA in vitro is human single-stranded DNA-binding protein (SSB, also called RF-A and RP-A). SSB consists of three polypeptides of relative molecular mass 70,000, 34,000 and 13,000, and acts with T antigen and topoisomerases to unwind DNA, allowing the access of other replication proteins. Human SSB can also stimulate the activity of polymerases alpha and delta, suggesting a further role in elongation during DNA replication. We have now found a role for human SSB in DNA excision repair using a cell-free system that can carry out nucleotide excision repair in vitro. Monoclonal antibodies against human SSB caused extensive inhibition of DNA repair in plasmid molecules damaged by ultraviolet light or acetylaminofluorene. Addition of purified SSB reversed this inhibition and further stimulated repair synthesis by increasing the number of repair events. These results show that a mammalian DNA replication protein is also essential for repair.  相似文献   

3.
S J Brill  B Stillman 《Nature》1989,342(6245):92-95
Cell-free replication systems for simian virus 40 (SV40) DNA are taken to be a model for the replication of eukaryotic chromosomes, because only one viral protein is required to supplement the replication proteins provided by a human cell extract. To prove that these cellular proteins function in chromosomal DNA replication we have begun to identify homologous proteins in an organism that can be genetically manipulated. Here we report the identification of yeast replication factor-A (yRF-A) from Saccharomyces cerevisiae and show that it is functionally and structurally related to a human protein that is required for the initiation and elongation of SV40 DNA replication. Yeast RF-A, a multi-subunit phosphoprotein, is similar to the human protein in its chromatographic behaviour, subunit structure and DNA-binding activity. The yeast protein will fully substitute for the human protein in an early stage of the initiation of SV40 DNA replication. Substitution of yRF-A in the complete SV40 replication system, however, results in reduced DNA replication, presumably due to a requirement for species-specific interactions between yeast RF-A and the DNA polymerase complex.  相似文献   

4.
5.
R McKay  D DiMaio 《Nature》1981,289(5800):810-813
  相似文献   

6.
J S Lebkowski  S Clancy  M P Calos 《Nature》1985,317(6033):169-171
Simian virus 40 (SV40) replicates efficiently in monkey kidney cells. However, we have now found that SV40-based vectors transfected into most human cells replicate poorly, if at all. In contrast, strong SV40 replication is observed in human embryonic kidney (HEK) cells transformed with the adenovirus early region, but not in untransformed HEK cells. Vector replication in adenovirus-transformed cells is dependent on the presence of the SV40 origin of replication and large-T antigen. However, vigorous replication occurs at levels of large-T antigen that are undetectable by immunofluorescence. These data suggest that the adenovirus oncogenes create a replication-permissive environment to which the SV40 replicon responds. Furthermore, replication and gene expression seem to be antagonistic on our vectors. High levels of large-T antigen are observed only when vector replication is blocked by mutations in the gene for large-T antigen or the origin of replication, or by direct inhibition of DNA polymerase with aphidicolin.  相似文献   

7.
Simian virus 40 (SV40) replicates in nuclei of human and monkey cells. One viral protein, large tumour (T) antigen, is required for the initiation of DNA replication. The development of in vitro replication systems which retain this property has facilitated the identification of the cellular components required for replication. T antigen recognizes the pentanucleotide 5'-GAGGC-3' which is present in four copies within the 64 base-pairs (bp) of the core origin. In the presence of ATP it binds with increased affinity forming a distinctive, bilobed structure visible in electron micrographs. As a helicase, it unwinds SV40 DNA bidirectionally from the origin. We report here that in vitro and in the presence of ATP, T antigen assembles a double hexamer, centred on the core origin and extending beyond it by 12 bp in each direction. The assembly of this dodecamer initiates an untwisting of the duplex by 2-3 turns. In the absence of ATP, a tetrameric structure is the largest found at the core origin. In the absence of DNA, but in the presence of ATP or its non-hydrolysable analogues, T antigen assembles into hexamers. This suggests that ATP effects an allosteric change in the monomer. The change alters protein-protein interactions and allows the assembly of a double hexamer, which initiates replication at the core origin.  相似文献   

8.
Nuclear protein with sequence homology to translation initiation factor eIF-4A   总被引:34,自引:0,他引:34  
M J Ford  I A Anton  D P Lane 《Nature》1988,332(6166):736-738
  相似文献   

9.
An embryo protein induced by SV40 virus transformation of mouse cells   总被引:17,自引:0,他引:17  
P T Mora  K Chandrasekaran  V W McFarland 《Nature》1980,288(5792):722-724
A specific protein of molecular weight (MW) approximately 55,000 (55K) was found recently by immunoprecipitation in all SV40 virus-transformed mammalian cells, in addition to the SV40 large T antigen (appoximately 94K) and small antigen (approximately 17K), which are the only proteins coded by the 'early half' of the SV40 genome. The 55K protein is encoded by cellular DNA; its peptide pattern is different from that of the SV40 antigens and it is species specific in mouse, rat, hamster, monkey and human SV40-transformed (or infected) cells. A 55K protein with a similar peptide pattern was found in mouse embryonal carcinoma cells not exposed to SV40. Similar proteins were reported in mouse sarcomas and leukaemias induced by a great variety of aetiological agents and also in a spontaneously transformed mouse fibroblast cell line, and it has been suggested that the protein may be a general correlated of cellular tumorigenicity. We now report that the approximately 55K protein is present in primary cell cultures from 12-14 day old mouse embryos, but not in 16-day old mouse embryos. The embryo protein has a peptide pattern virtually indistinguishable from that of the SV40-induced protein. We also show by comparing closely related cell families that spontaneously transformed highly tumorigenic mouse cells do not possess the 55K protein.  相似文献   

10.
The v-myc oncogene can induce tumours in haematopoietic, mesenchymal and epithelial tissues. The corresponding c-myc proto-oncogene can contribute to the genesis and/or the progression of an equally wide variety of tumours when activated by retroviral insertions, chromosomal translocations or gene amplification. The c-myc gene product is a DNA-binding, nuclear phosphoprotein that is involved in the control of cell proliferation and possibly in DNA synthesis. The replication of Simian virus 40 (SV40) is a useful model system to study eukaryotic DNA replication as the virus relies almost entirely on cellular DNA replication apparatus. The SV40-based vector, pSVEpR4, replicates poorly in the human BJAB lymphoma line and in most human cells, but replicates well in Burkitt lymphoma lines, which have fused immunoglobulin and c-myc genes, resulting in high c-myc expression. Cotransfection of the BJAB cells with a c-myc-expressing construct (pI4-P6) increased the replication of pSVEpR4 tenfold. Our findings indicate that overexpression of the c-myc gene product allows the replication of SV40 in human lymphoma cells, suggesting that c-myc is involved in the control of replication.  相似文献   

11.
p53 and DNA polymerase alpha compete for binding to SV40 T antigen   总被引:2,自引:0,他引:2  
J V Gannon  D P Lane 《Nature》1987,329(6138):456-458
The large T antigen (T) of simian virus 40 is a multifunctional protein required for both viral DNA replication and cellular transformation. T antigen forms specific protein complexes with the host protein p53 in both virus-infected and transformed cells. p53 has recently been shown to be an oncogene, but its normal function is not clear. We previously established a radioimmunoassay to study the newly described complex between T antigen and DNA polymerase alpha, and have noted a similarity between the antigenic changes induced in T by the binding of both p53 and polymerase. We now extend this analysis to a larger collection of anti-T antibodies and formally establish that p53 and DNA polymerase alpha can compete for binding to the SV40 T antigen. At a critical concentration of the three components it is possible to detect a trimeric complex of T, p53 and DNA polymerase alpha. Our observations have important implications for the control by these nuclear oncogenes of viral and cellular DNA synthesis and viral host range in both normal and transformed cells. We present a model for the action of p53 in growth control.  相似文献   

12.
R D Palmiter  H Y Chen  A Messing  R L Brinster 《Nature》1985,316(6027):457-460
We have shown recently that choroid plexus tumours frequently develop in transgenic mice which have developed from fertilized eggs injected with DNA molecules containing both simian virus 40 (SV40) early-region genes and metallothionein (MT) fusion genes, and several lines of mice have now been established in which all of the offspring that inherit the foreign DNA succumb to these tumours at 3-5 months of age (ref. 1 and our unpublished data). Several other tissues, notably thymus and kidney, occasionally also show pathological changes. SV40 large-T antigen protein and messenger RNA are always present in affected tissues at much greater concentrations than in unaffected tissues, suggesting that SV40 early-region genes are preferentially activated in choroid plexus, thymus and kidney and that this activation frequently leads to tumorigenesis in the choroid plexus. To determine which regions of the original constructs are important for this tumorigenesis, we have now tested several derivatives and report here that the large-T antigen is sufficient, that the MT fusion gene is dispensable and that the SV40 enhancer (72-base-pair repeat region) has an important role in directing tumours to the choroid plexus. Deletion of the SV40 enhancer region alone commonly leads to peripheral neuropathy, as well as liver and pancreatic tumours, which are the subject of the accompanying paper. Evidence is presented that these pathologies may result from an enhancing effect of the MT sequences on large-T antigen genes, made possible by removal of the otherwise dominant SV40 enhancer.  相似文献   

13.
Mouse p53 inhibits SV40 origin-dependent DNA replication   总被引:52,自引:0,他引:52  
p53 is a cellular phosphoprotein that is present at elevated concentrations in cells transformed by different agents. p53 complementary DNA expression-constructs immortalize primary cells in vitro and co-operate with an activated ras oncogene in malignant transformation. Several reports have implicated p53 in mammalian cell cycle control and specifically with events occurring at the G0-G1 boundary. p53 forms specific complexes with simian virus 40 (SV40) large-T antigen, and such complexes are found associated with both replicating and mature SV40 DNA in lytically infected cells. In an accompanying paper Gannon and Lane report that in in vitro plate-binding assays, mouse p53 can displace polymerase alpha from complex with T-antigen. We have examined the in vivo consequences of expressing wild-type and mutant p53 proteins from other species in SV40-transformed monkey cells. We report here that expression of mouse p53 results in a substantial and selective inhibition of SV40 origin-dependent DNA replication. In addition to any function in the G0-G1 transition, the data presented suggest that p53 may affect directly the initiation or maintenance of replicative DNA synthesis.  相似文献   

14.
本研究将猿猴空泡病毒40(Simian virus 40,SV40)的主要衣壳蛋白VP1通过Bac-toBac杆状病毒表达系统在昆虫细胞中大量表达,并自我装配成形态结构及免疫原性均与天然病毒粒子相同或相似的SV40病毒样颗粒(SV40virus-like particles,SV40VLPs),经表达条件优化及分子筛纯化,成功制备出高纯度的VLPs.聚丙烯酰胺凝胶电泳结果可见大小约为46kDa的VP1特异性条带.间接免疫荧光试验(IFA)证实VP1蛋白能够与异硫氰酸荧光素标记的羊抗鼠抗体发生反应,出现明显的特异性绿色荧光,具有良好的抗原性.纯化产物在透射电镜下可见直径约45nm的病毒样颗粒,显示出成功组装了SV40VLPs,免疫印迹试验证明VLPs能够与人抗SV40阳性血清发生反应,具有良好的抗原性.  相似文献   

15.
D McVey  L Brizuela  I Mohr  D R Marshak  Y Gluzman  D Beach 《Nature》1989,341(6242):503-507
Simian virus 40 large tumour antigen (T) is a replication origin binding protein required for viral DNA synthesis. Unphosphorylated T antigen is deficient in promoting DNA replication in vitro but can be activated by phosphorylation at residue threonine 124 by the cdc2 protein kinase. This observation demonstrates that T is regulated by phosphorylation and provides a model for cdc2 function in the control of DNA replication.  相似文献   

16.
摘要: 目的对来源于一株自然感染猕猴肉瘤病毒SV40 的猴肾细胞培养物进行大T 抗原C-羧基端( T-ag-C) 基因 克隆及核苷酸序列分析。方法采用PCR 法分别从一株自然感染SV40 病毒的猴肾细胞培养物和SV40776 标准 株接种的vero 细胞培养物提取的总DNA 中扩增出441bp 的SV40 大T 抗原C-羧基端( T-ag-C) 基因片段,分别将其 克隆到PMD18-T 载体中,转化至JM109 感受态大肠杆菌细胞后,挑取阳性克隆进行测序鉴定,并对获得的目的基 因核苷酸序列进行序列分析及同源性分析。结果来源于猴肾细胞培养物的SV40 大T 抗原片段与本实验室来源 于云南野生猴群的猕猴外周血所得到的SV40 大T 抗原片段同源性为97. 31% ,与GenBank 中登录号为NC _ 001669. 1 序列进行比对,同源性为96. 33% ; 与SV40-776 标准株接种的vero 细胞培养物所扩增的大T 抗原片段同 源性为97. 55% 。结论对大T 抗原基因克隆和序列分析是了解和掌握SV40 病毒分子流行病学及其变异趋势的 重要手段。  相似文献   

17.
Wild-type p53 activates transcription in vitro.   总被引:70,自引:0,他引:70  
G Farmer  J Bargonetti  H Zhu  P Friedman  R Prywes  C Prives 《Nature》1992,358(6381):83-86
  相似文献   

18.
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta.   总被引:28,自引:0,他引:28  
C Masutani  R Kusumoto  A Yamada  N Dohmae  M Yokoi  M Yuasa  M Araki  S Iwai  K Takio  F Hanaoka 《Nature》1999,399(6737):700-704
Xeroderma pigmentosum variant (XP-V) is an inherited disorder which is associated with increased incidence of sunlight-induced skin cancers. Unlike other xeroderma pigmentosum cells (belonging to groups XP-A to XP-G), XP-V cells carry out normal nucleotide-excision repair processes but are defective in their replication of ultraviolet-damaged DNA. It has been suspected for some time that the XPV gene encodes a protein that is involved in trans-lesion DNA synthesis, but the gene product has never been isolated. Using an improved cell-free assay for trans-lesion DNA synthesis, we have recently isolated a DNA polymerase from HeLa cells that continues replication on damaged DNA by bypassing ultraviolet-induced thymine dimers in XP-V cell extracts. Here we show that this polymerase is a human homologue of the yeast Rad30 protein, recently identified as DNA polymerase eta. This polymerase and yeast Rad30 are members of a family of damage-bypass replication proteins which comprises the Escherichia coli proteins UmuC and DinB and the yeast Rev1 protein. We found that all XP-V cells examined carry mutations in their DNA polymerase eta gene. Recombinant human DNA polymerase eta corrects the inability of XP-V cell extracts to carry out DNA replication by bypassing thymine dimers on damaged DNA. Together, these results indicate that DNA polymerase eta could be the XPV gene product.  相似文献   

19.
Activation of BPV-1 replication in vitro by the transcription factor E2.   总被引:53,自引:0,他引:53  
L Yang  R Li  I J Mohr  R Clark  M R Botchan 《Nature》1991,353(6345):628-632
  相似文献   

20.
R Henning  J Lange-Mutschler 《Nature》1983,305(5936):736-738
Simian virus 40 (SV40) large T antigen, a multifunctional protein necessary for lytic growth and cell transformation, is located mainly in the nucleus and in small amounts on the cell surface (surface T). Surface T may have a passive role in SV40 tumour rejection by cytotoxic T cells as a component of SV40-TSTA (tumour-specific transplantation antigen). The unusual induction of this immune response by immunizing mice with soluble T antigen led us to investigate the in vitro binding of T antigen to the surface of living cells in more detail. Our results show that native surface T and a minor subset of large T antigen having a high cell surface binding affinity in vitro, behave like integral membrane proteins. Several viral proteins including SV40 T antigen and cellular proteins seem to be linked to fatty acids (acylation). To analyse whether this mechanism is involved in the stable attachment of in vitro-bound T antigen to the plasma membrane of living target cells, we determined the degree of labelling of this molecule by using target cells prelabelled with 3H-fatty acid. Here we report that T antigen extracted from unlabelled SV40-transformed cells (SV80) becomes 3H-labelled after in vitro binding to the cell surface of 3H-palmitate-prelabelled HeLa cells. These results suggest that T antigen attached externally to living cells, may be anchored by tightly linked lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号