首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sun Y  Olson R  Horning M  Armstrong N  Mayer M  Gouaux E 《Nature》2002,417(6886):245-253
Ligand-gated ion channels transduce chemical signals into electrical impulses by opening a transmembrane pore in response to binding one or more neurotransmitter molecules. After activation, many ligand-gated ion channels enter a desensitized state in which the neurotransmitter remains bound but the ion channel is closed. Although receptor desensitization is crucial to the functioning of many ligand-gated ion channels in vivo, the molecular basis of this important process has until now defied analysis. Using the GluR2 AMPA-sensitive glutamate receptor, we show here that the ligand-binding cores form dimers and that stabilization of the intradimer interface by either mutations or allosteric modulators reduces desensitization. Perturbations that destabilize the interface enhance desensitization. Receptor activation involves conformational changes within each subunit that result in an increase in the separation of portions of the receptor that are linked to the ion channel. Our analysis defines the dimer interface in the resting and activated state, indicates how ligand binding is coupled to gating, and suggests modes of dimer dimer interaction in the assembled tetramer. Desensitization occurs through rearrangement of the dimer interface, which disengages the agonist-induced conformational change in the ligand-binding core from the ion channel gate.  相似文献   

2.
P Gregor  I Mano  I Maoz  M McKeown  V I Teichberg 《Nature》1989,342(6250):689-692
Kainate receptors mediate some of the excitatory transactions carried out in the central nervous system by the neurotransmitter glutamate. They are involved in neurotoxicity, possibly in neurodegenerative disorders and it has been suggested that they have a role in long-term potentiation. Kainate receptors are present both on neuronal and glial cell membranes where they regulate the gating of a voltage-independent ion channel. Nothing is known about their molecular structure. Taking advantage of the unusually high abundance of 3H-kainate binding sites in the chick cerebellum, we have isolated an oligomeric protein that displays a pharmacological profile similar to that of a kainate receptor, and have demonstrated, using the monoclonal antibody IX-50, that this protein is composed of a single polypeptide of Mr 49,000 which harbours the specific kainate recognition site. The structure of this kainate binding protein (KBP) is also of interest because of its exclusive cerebellar localization on Bergmann glial membrane in close proximity to established glutamatergic synapses. We now report the isolation of the complementary DNA containing the complete coding region of the kainate binding protein. The predicted structure of the mature protein has four putative transmembrane domains with a topology analogous to that found in the superfamily of ligand-gated ion channels. This raises the possibility, that kainate binding protein may form part of an ion channel and may be a subunit of a kainate subtype of glutamate receptor.  相似文献   

3.
Coupling of agonist binding to channel gating in the GABA(A) receptor   总被引:7,自引:0,他引:7  
Kash TL  Jenkins A  Kelley JC  Trudell JR  Harrison NL 《Nature》2003,421(6920):272-275
Neurotransmitters such as acetylcholine and GABA (gamma-aminobutyric acid) mediate rapid synaptic transmission by activating receptors belonging to the gene superfamily of ligand-gated ion channels (LGICs). These channels are pentameric proteins that function as signal transducers, converting chemical messages into electrical signals. Neurotransmitters activate LGICs by interacting with a ligand-binding site, triggering a conformational change in the protein that results in the opening of an ion channel. This process, which is known as 'gating', occurs rapidly and reversibly, but the molecular rearrangements involved are not well understood. Here we show that optimal gating in the GABA(A) receptor, a member of the LGIC superfamily, is dependent on electrostatic interactions between the negatively charged Asp 57 and Asp 149 residues in extracellular loops 2 and 7, and the positively charged Lys 279 residue in the transmembrane 2-3 linker region of the alpha1-subunit. During gating, Asp 149 and Lys 279 seem to move closer to one another, providing a potential mechanism for the coupling of ligand binding to opening of the ion channel.  相似文献   

4.
Hattori M  Gouaux E 《Nature》2012,485(7397):207-212
P2X receptors are trimeric ATP-activated ion channels permeable to Na+, K+ and Ca2+. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body β-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.  相似文献   

5.
Hilf RJ  Dutzler R 《Nature》2009,457(7225):115-118
The X-ray structure of a pentameric ligand-gated ion channel from Erwinia chrysanthemi (ELIC) has recently provided structural insight into this family of ion channels at high resolution. The structure shows a homo-pentameric protein with a barrel-stave architecture that defines an ion-conduction pore located on the fivefold axis of symmetry. In this structure, the wide aqueous vestibule that is encircled by the extracellular ligand-binding domains of the five subunits narrows to a discontinuous pore that spans the lipid bilayer. The pore is constricted by bulky hydrophobic residues towards the extracellular side, which probably serve as barriers that prevent the diffusion of ions. This interrupted pore architecture in ELIC thus depicts a non-conducting conformation of a pentameric ligand-gated ion channel, the thermodynamically stable state in the absence of bound ligand. As ligand binding promotes pore opening in these ion channels and the specific ligand for ELIC has not yet been identified, we have turned our attention towards a homologous protein from the cyanobacterium Gloebacter violaceus (GLIC). GLIC was shown to form proton-gated channels that are activated by a pH decrease on the extracellular side and that do not desensitize after activation. Both prokaryotic proteins, ELIC and GLIC form ion channels that are selective for cations over anions with poor discrimination among monovalent cations, characteristics that resemble the conduction properties of the cation-selective branch of the family that includes acetylcholine and serotonin receptors. Here we present the X-ray structure of GLIC at 3.1 A resolution. The structure reveals a conformation of the channel that is distinct from ELIC and that probably resembles the open state. In combination, both structures suggest a novel gating mechanism for pentameric ligand-gated ion channels where channel opening proceeds by a change in the tilt of the pore-forming helices.  相似文献   

6.
Jasti J  Furukawa H  Gonzales EB  Gouaux E 《Nature》2007,449(7160):316-323
Acid-sensing ion channels (ASICs) are voltage-independent, proton-activated receptors that belong to the epithelial sodium channel/degenerin family of ion channels and are implicated in perception of pain, ischaemic stroke, mechanosensation, learning and memory. Here we report the low-pH crystal structure of a chicken ASIC1 deletion mutant at 1.9 A resolution. Each subunit of the chalice-shaped homotrimer is composed of short amino and carboxy termini, two transmembrane helices, a bound chloride ion and a disulphide-rich, multidomain extracellular region enriched in acidic residues and carboxyl-carboxylate pairs within 3 A, suggesting that at least one carboxyl group bears a proton. Electrophysiological studies on aspartate-to-asparagine mutants confirm that these carboxyl-carboxylate pairs participate in proton sensing. Between the acidic residues and the transmembrane pore lies a disulphide-rich 'thumb' domain poised to couple the binding of protons to the opening of the ion channel, thus demonstrating that proton activation involves long-range conformational changes.  相似文献   

7.
Pentameric ligand-gated ion channels from the Cys-loop family mediate fast chemo-electrical transduction, but the mechanisms of ion permeation and gating of these membrane proteins remain elusive. Here we present the X-ray structure at 2.9 A resolution of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel homologue (GLIC) at pH 4.6 in an apparently open conformation. This cationic channel is known to be permanently activated by protons. The structure is arranged as a funnel-shaped transmembrane pore widely open on the outer side and lined by hydrophobic residues. On the inner side, a 5 A constriction matches with rings of hydrophilic residues that are likely to contribute to the ionic selectivity. Structural comparison with ELIC, a bacterial homologue from Erwinia chrysanthemi solved in a presumed closed conformation, shows a wider pore where the narrow hydrophobic constriction found in ELIC is removed. Comparative analysis of GLIC and ELIC reveals, in concert, a rotation of each extracellular beta-sandwich domain as a rigid body, interface rearrangements, and a reorganization of the transmembrane domain, involving a tilt of the M2 and M3 alpha-helices away from the pore axis. These data are consistent with a model of pore opening based on both quaternary twist and tertiary deformation.  相似文献   

8.
Amino-acid sequences derived from complementary DNAs encoding the alpha- and beta-subunits of the GABA/benzodiazepine receptor from bovine brain show homology with other ligand-gated receptor subunits, suggesting that there is a super-family of ion-channel-containing receptors. Co-expression of the in vitro-generated alpha-subunit and beta-subunit RNAs in Xenopus oocytes produces a functional receptor and ion channel with the pharmacological properties characteristic of the GABAA receptor.  相似文献   

9.
Glycine binding primes NMDA receptor internalization   总被引:18,自引:0,他引:18  
Nong Y  Huang YQ  Ju W  Kalia LV  Ahmadian G  Wang YT  Salter MW 《Nature》2003,422(6929):302-307
NMDA (N-methyl-d-aspartate) receptors (NMDARs) are a principal subtype of excitatory ligand-gated ion channel with prominent roles in physiological and disease processes in the central nervous system. Recognition that glycine potentiates NMDAR-mediated currents as well as being a requisite co-agonist of the NMDAR subtype of 'glutamate' receptor profoundly changed our understanding of chemical synaptic communication in the central nervous system. The binding of both glycine and glutamate is necessary to cause opening of the NMDAR conductance pore. Although binding of either agonist alone is insufficient to cause current flow through the channel, we report here that stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. Glycine binding alone does not cause the receptor to be endocytosed; this requires both glycine and glutamate site activation of NMDARs. The priming effect of glycine is mimicked by the NMDAR glycine site agonist d-serine, and is blocked by competitive glycine site antagonists. Synaptic as well as extrasynaptic NMDARs are primed for internalization by glycine site stimulation. Our results demonstrate transmembrane signal transduction through activating the glycine site of NMDARs, and elucidate a model for modulating cell-cell communication in the central nervous system.  相似文献   

10.
Hibbs RE  Gouaux E 《Nature》2011,474(7349):54-60
Fast inhibitory neurotransmission is essential for nervous system function and is mediated by binding of inhibitory neurotransmitters to receptors of the Cys-loop family embedded in the membranes of neurons. Neurotransmitter binding triggers a conformational change in the receptor, opening an intrinsic chloride channel and thereby dampening neuronal excitability. Here we present the first three-dimensional structure, to our knowledge, of an inhibitory anion-selective Cys-loop receptor, the homopentameric Caenorhabditis elegans glutamate-gated chloride channel α (GluCl), at 3.3?? resolution. The X-ray structure of the GluCl-Fab complex was determined with the allosteric agonist ivermectin and in additional structures with the endogenous neurotransmitter L-glutamate and the open-channel blocker picrotoxin. Ivermectin, used to treat river blindness, binds in the transmembrane domain of the receptor and stabilizes an open-pore conformation. Glutamate binds in the classical agonist site at subunit interfaces, and picrotoxin directly occludes the pore near its cytosolic base. GluCl provides a framework for understanding mechanisms of fast inhibitory neurotransmission and allosteric modulation of Cys-loop receptors.  相似文献   

11.
Efremov RG  Sazanov LA 《Nature》2011,476(7361):414-420
Complex I is the first and largest enzyme of the respiratory chain, coupling electron transfer between NADH and ubiquinone to the translocation of four protons across the membrane. It has a central role in cellular energy production and has been implicated in many human neurodegenerative diseases. The L-shaped enzyme consists of hydrophilic and membrane domains. Previously, we determined the structure of the hydrophilic domain. Here we report the crystal structure of the Esherichia coli complex I membrane domain at 3.0?? resolution. It includes six subunits, NuoL, NuoM, NuoN, NuoA, NuoJ and NuoK, with 55 transmembrane helices. The fold of the homologous antiporter-like subunits L, M and N is novel, with two inverted structural repeats of five transmembrane helices arranged, unusually, face-to-back. Each repeat includes a discontinuous transmembrane helix and forms half of a channel across the membrane. A network of conserved polar residues connects the two half-channels, completing the proton translocation pathway. Unexpectedly, lysines rather than carboxylate residues act as the main elements of the proton pump in these subunits. The fourth probable proton-translocation channel is at the interface of subunits N, K, J and A. The structure indicates that proton translocation in complex I, uniquely, involves coordinated conformational changes in six symmetrical structural elements.  相似文献   

12.
General anaesthetics have enjoyed long and widespread use but their molecular mechanism of action remains poorly understood. There is good evidence that their principal targets are pentameric ligand-gated ion channels (pLGICs) such as inhibitory GABA(A) (γ-aminobutyric acid) receptors and excitatory nicotinic acetylcholine receptors, which are respectively potentiated and inhibited by general anaesthetics. The bacterial homologue from Gloeobacter violaceus (GLIC), whose X-ray structure was recently solved, is also sensitive to clinical concentrations of general anaesthetics. Here we describe the crystal structures of the complexes propofol/GLIC and desflurane/GLIC. These reveal a common general-anaesthetic binding site, which pre-exists in the apo-structure in the upper part of the transmembrane domain of each protomer. Both molecules establish van der Waals interactions with the protein; propofol binds at the entrance of the cavity whereas the smaller, more flexible, desflurane binds deeper inside. Mutations of some amino acids lining the binding site profoundly alter the ionic response of GLIC to protons, and affect its general-anaesthetic pharmacology. Molecular dynamics simulations, performed on the wild type (WT) and two GLIC mutants, highlight differences in mobility of propofol in its binding site and help to explain these effects. These data provide a novel structural framework for the design of general anaesthetics and of allosteric modulators of brain pLGICs.  相似文献   

13.
5-hydroxytryptamine type 3 (5-HT3) receptors are members of the Cys-loop receptor superfamily. Neurotransmitter binding in these proteins triggers the opening (gating) of an ion channel by means of an as-yet-uncharacterized conformational change. Here we show that a specific proline (Pro 8*), located at the apex of the loop between the second and third transmembrane helices (M2-M3), can link binding to gating through a cis-trans isomerization of the protein backbone. Using unnatural amino acid mutagenesis, a series of proline analogues with varying preference for the cis conformer was incorporated at the 8* position. Proline analogues that strongly favour the trans conformer produced non-functional channels. Among the functional mutants there was a strong correlation between the intrinsic cis-trans energy gap of the proline analogue and the activation of the channel, suggesting that cis-trans isomerization of this single proline provides the switch that interconverts the open and closed states of the channel. Consistent with this proposal, nuclear magnetic resonance studies on an M2-M3 loop peptide reveal two distinct, structured forms. Our results thus confirm the structure of the M2-M3 loop and the critical role of Pro 8* in the 5-HT3 receptor. In addition, they suggest that a molecular rearrangement at Pro 8* is the structural mechanism that opens the receptor pore.  相似文献   

14.
5-HT3 receptors are membrane ion channels   总被引:20,自引:0,他引:20  
V Derkach  A Surprenant  R A North 《Nature》1989,339(6227):706-709
The neurohormone 5-hydroxytryptamine (5HT or serotonin) exerts its effects by binding to several distinct receptors. One of these is the M-receptor of Gaddum and Picarelli, now called the 5-HT3 receptor, through which 5-HT acts to excite enteric neurons. Ligand-binding and functional studies have shown that the 5-HT3 receptor is widely distributed in peripheral and central nervous tissue and evidence suggests that the receptor might incorporate an ion channel permeable to cations. We now report the first recordings of currents through single ion channels activated by 5-HT3 receptors, in excised (outside-out) membrane patches from neurons of the guinea pig submucous plexus. Whereas application of acetylcholine activated predominantly a 40-pS channel, 5-HT caused unitary currents apparently through two channels of conductances of 15 and 9 pS, which were reversibly blocked by antagonists of the 5-HT3 receptor. Receptors for amine neurotransmitters, including 5-HT1 and 5-HT2, have previously been thought to transduce their effects through GTP-binding proteins: the direct demonstration that 5-HT3 receptors are ligand-gated ion channels implies a role for 5-HT, and perhaps other amines, as a 'fast' synaptic transmitter.  相似文献   

15.
Excitatory amino acids (EAAs) are important neurotransmitters in the vertebrate central nervous system. Electrophysiological and ligand-binding studies indicate that at least three different receptor subtypes for EAAs exist--N-methyl-D-aspartate, kainate and quisqualate receptor subtypes--on the basis of the preferred agonist of the receptors. We recently purified a kainate-binding protein (KBP) from frog (Rana pipiens berlandieri) brain by domoic acid (a high-affinity kainate analogue) affinity chromatography, and showed that the kainate-binding activity was associated with a protein of relative molecular mass 48,000 (Mr 48 K). The pharmacological properties and the anatomical distribution of KBP were consistent with those of a kainate receptor-ionophore complex. We have now isolated a complementary DNA encoding KBP of Mr 48 K. The deduced amino-acid sequence of the KBP has similar hydrophobic profiles to those found in other ligand-gated ion channel subunits, and shows some amino-acid sequence similarities to the corresponding regions of brain nicotinic acetylcholine receptor subunits. Localization of the KBP messenger RNAs by in situ hybridization histochemistry is compatible with the results of immunohistochemistry and receptor autoradiography studies. COS-7 cells transfected with the cDNA encoding the KBP show high-affinity kainate-binding activity with pharmacological properties similar to those of the biochemically purified KBP. These results provide the first molecular characterization of an EAA-binding site and raise the possibility that the KBP cDNA encodes a ligand-binding subunit of a kainate receptor-ionophore complex.  相似文献   

16.
The metabotropic glutamate receptors (mGluRs) are key receptors in the modulation of excitatory synaptic transmission in the central nervous system. Here we have determined three different crystal structures of the extracellular ligand-binding region of mGluR1--in a complex with glutamate and in two unliganded forms. They all showed disulphide-linked homodimers, whose 'active' and 'resting' conformations are modulated through the dimeric interface by a packed alpha-helical structure. The bi-lobed protomer architectures flexibly change their domain arrangements to form an 'open' or 'closed' conformation. The structures imply that glutamate binding stabilizes both the 'active' dimer and the 'closed' protomer in dynamic equilibrium. Movements of the four domains in the dimer are likely to affect the separation of the transmembrane and intracellular regions, and thereby activate the receptor. This scheme in the initial receptor activation could be applied generally to G-protein-coupled neurotransmitter receptors that possess extracellular ligand-binding sites.  相似文献   

17.
There is accumulating evidence that glial cells actively modulate neuronal synaptic transmission. We identified a glia-derived soluble acetylcholine-binding protein (AChBP), which is a naturally occurring analogue of the ligand-binding domains of the nicotinic acetylcholine receptors (nAChRs). Like the nAChRs, it assembles into a homopentamer with ligand-binding characteristics that are typical for a nicotinic receptor; unlike the nAChRs, however, it lacks the domains to form a transmembrane ion channel. Presynaptic release of acetylcholine induces the secretion of AChBP through the glial secretory pathway. We describe a molecular and cellular mechanism by which glial cells release AChBP in the synaptic cleft, and propose a model for how they actively regulate cholinergic transmission between neurons in the central nervous system.  相似文献   

18.
Vergani P  Lockless SW  Nairn AC  Gadsby DC 《Nature》2005,433(7028):876-880
ABC (ATP-binding cassette) proteins constitute a large family of membrane proteins that actively transport a broad range of substrates. Cystic fibrosis transmembrane conductance regulator (CFTR), the protein dysfunctional in cystic fibrosis, is unique among ABC proteins in that its transmembrane domains comprise an ion channel. Opening and closing of the pore have been linked to ATP binding and hydrolysis at CFTR's two nucleotide-binding domains, NBD1 and NBD2 (see, for example, refs 1, 2). Isolated NBDs of prokaryotic ABC proteins dimerize upon binding ATP, and hydrolysis of the ATP causes dimer dissociation. Here, using single-channel recording methods on intact CFTR molecules, we directly follow opening and closing of the channel gates, and relate these occurrences to ATP-mediated events in the NBDs. We find that energetic coupling between two CFTR residues, expected to lie on opposite sides of its predicted NBD1-NBD2 dimer interface, changes in concert with channel gating status. The two monitored side chains are independent of each other in closed channels but become coupled as the channels open. The results directly link ATP-driven tight dimerization of CFTR's cytoplasmic nucleotide-binding domains to opening of the ion channel in the transmembrane domains. This establishes a molecular mechanism, involving dynamic restructuring of the NBD dimer interface, that is probably common to all members of the ABC protein superfamily.  相似文献   

19.
R C Hardie 《Nature》1989,339(6227):704-706
Compared with the variety of neuromodulatory agents acting through second messenger systems, the number of fast neurotransmitters which directly activate ion channels is limited. Thus, synaptic receptors that act as ligand-gated ion channels have been firmly established only for acetylcholine, glycine, GABA and glutamate, with the first three of these belonging to the same molecular superfamily. Recently, however, a possible addition to this list has been suggested as a result of evidence implicating histamine as the neurotransmitter released by a variety of arthropod photoreceptors. Neurotransmission at this synapse has been studied extensively, particularly in the fly. The postsynaptic elements, large monopolar cells, respond to light with a rapid, chloride-mediated hyperpolarization that can be mimicked by the application of histamine. In this report I document some basic properties of the histamine receptors present on large monopolar cells isolated from blowfly optic lobes. The receptor is a ligand-gated chloride channel showing properties consistent with its presumed role of mediating neurotransmission at the photoreceptor synapse.  相似文献   

20.
Lau WC  Rubinstein JL 《Nature》2012,481(7380):214-218
Ion-translocating rotary ATPases serve either as ATP synthases, using energy from a transmembrane ion motive force to create the cell's supply of ATP, or as transmembrane ion pumps that are powered by ATP hydrolysis. The members of this family of enzymes each contain two rotary motors: one that couples ion translocation to rotation and one that couples rotation to ATP synthesis or hydrolysis. During ATP synthesis, ion translocation through the membrane-bound region of the complex causes rotation of a central rotor that drives conformational changes and ATP synthesis in the catalytic region of the complex. There are no structural models available for the intact membrane region of any ion-translocating rotary ATPase. Here we present a 9.7?? resolution map of the H(+)-driven ATP synthase from Thermus thermophilus obtained by electron cryomicroscopy of single particles in ice. The 600-kilodalton complex has an overall subunit composition of A(3)B(3)CDE(2)FG(2)IL(12). The membrane-bound motor consists of a ring of L subunits and the carboxy-terminal region of subunit I, which are equivalent to the c and a subunits of most other rotary ATPases, respectively. The map shows that the ring contains 12 L subunits and that the I subunit has eight transmembrane helices. The L(12) ring and I subunit have a surprisingly small contact area in the middle of the membrane, with helices from the I subunit making contacts with two different L subunits. The transmembrane helices of subunit I form bundles that could serve as half-channels across the membrane, with the first half-channel conducting protons from the periplasm to the L(12) ring and the second half-channel conducting protons from the L(12) ring to the cytoplasm. This structure therefore suggests the mechanism by which a transmembrane proton motive force is converted to rotation in rotary ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号