首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Voltage-dependent effect of curare at the frog neuromuscular junction.   总被引:9,自引:0,他引:9  
R S Manalis 《Nature》1977,267(5609):366-368
  相似文献   

2.
3.
Effects of thymic extract on the neuromuscular junction   总被引:2,自引:0,他引:2  
J D Parkes  J A McKinna 《Nature》1967,214(5093):1116-1117
  相似文献   

4.
5.
R S Manalis  G P Cooper 《Nature》1973,243(5406):354-356
  相似文献   

6.
7.
8.
9.
10.
11.
兴奋由神经向肌肉的传递是通过神经肌肉接点(N--M接点)得以实现的。本通过四种阻滞剂(过量Mg^2 和K^ 、盐酸普鲁卡因、硫酸阿托品)对N--M接点的阻滞作用进行了研究。结果表明:过量的Mg^ 和K^ 、盐酸普鲁卡因、硫酸阿托品对N--M接点有明显的阻滞作用。  相似文献   

12.
R L Parsons  W W Hofmann  G A Feigen 《Nature》1965,208(5010):590-591
  相似文献   

13.
Suppression of sprouting at the neuromuscular junction by immune sera   总被引:1,自引:0,他引:1  
M E Gurney 《Nature》1984,307(5951):546-548
Injury of afferent motor axons or pathological loss of motoneurones from the spinal cord causes the remaining axons within a muscle to sprout and to reinnervate the denervated muscle fibres. Sprouting occurs at two sites along intramuscular axons, at nodes of Ranvier (nodal sprouting) and at the neuromuscular junction (terminal sprouting). Terminal sprouting is also produced by treatment with botulinum toxin and by other agents that render muscle inactive. The muscle probably provides a signal for terminal sprouting as restoration of muscle activity by direct electrical stimulation prevents sprouting. Such a signal might be a local change on the muscle fibre surface or a 'soluble' sprouting factor, although the failure to induce terminal sprouting in one muscle by denervating adjacent muscles argues against the latter hypothesis. I now report that rabbit antisera against a 56,000 (56K)-molecular weight protein secreted by denervated rat muscle suppress botulinum toxin-induced terminal sprouting in the mouse gluteus muscle. An immune response against this protein has also been detected in serum of patients with amyotrophic lateral sclerosis (ALS), a disease in which loss of motoneurones from the spinal cord is not accompanied by the degree of sprouting and reinnervation seen in other motoneurone diseases.  相似文献   

14.
15.
16.
R Miledi  P C Molenaar  R L Polak 《Nature》1978,272(5654):641-643
  相似文献   

17.
Na channels in skeletal muscle concentrated near the neuromuscular junction   总被引:2,自引:0,他引:2  
K G Beam  J H Caldwell  D T Campbell 《Nature》1985,313(6003):588-590
Neuronal function depends crucially on the spatial segregation of specific membrane proteins, particularly the segregation associated with sites of synaptic contact. Understanding the factors governing this localization of proteins is a major goal of cellular neurobiology. A conspicuous example of synaptic specialization is the almost exclusive localization of vertebrate skeletal muscle acetylcholine (ACh) receptors to the subsynaptic membrane of the neuromuscular junction (for example, refs 1,2). The localization of other membrane proteins in skeletal muscle has been much less studied, but a knowledge of their distribution is crucial for understanding the factors governing regional specialization. We have explored the distribution in muscle of the voltage-gated Na channel responsible for the action potential using the loose patch-clamp technique, and have measured Na currents in 5-10 micron-diameter membrane patches as a function of distance from the end plate region of snake and rat muscle fibres. Here we report that the Na current density immediately adjacent to the endplate is 5-10-fold higher than at regions away from the endplate. The increased Na current density falls off rapidly with distance, reaching the background level 100-200 micron from the endplate. Although one might expect ACh receptors to be concentrated near the region of ACh release, such a concentration for Na channels, which propagate the impulse throughout the length of the cell, is surprising and suggests that factors similar to those responsible for concentrating ACh receptors at the endplate also operate to concentrate Na channels.  相似文献   

18.
The architecture of active zone material at the frog's neuromuscular junction   总被引:11,自引:0,他引:11  
Harlow ML  Ress D  Stoschek A  Marshall RM  McMahan UJ 《Nature》2001,409(6819):479-484
Active zone material at the nervous system's synapses is situated next to synaptic vesicles that are docked at the presynaptic plasma membrane, and calcium channels that are anchored in the membrane. Here we use electron microscope tomography to show the arrangement and associations of structural components of this compact organelle at a model synapse, the frog's neuromuscular junction. Our findings indicate that the active zone material helps to dock the vesicles and anchor the channels, and that its architecture provides both a particular spatial relationship and a structural linkage between them. The structural linkage may include proteins that mediate the calcium-triggered exocytosis of neurotransmitter by the synaptic vesicles during synaptic transmission.  相似文献   

19.
W D Snider  G L Harris 《Nature》1979,281(5726):69-71
Recent investigations have established that many of the normal properties of muscle fibres are maintained, at least in part, by muscle activity. Thus, a fall in resting membrane potential, an increase in input resistance, and spread of acetylcholine receptors to extrajunctional sites can all be induced by abolishing muscle activity and prevented by direct stimulation of denervated muscle fibres. Muscle activity also exerts a trophic influence on the innervating motoneurones; furthermore it may be a factor in the regulation of sprouting. Brown and Ironton found fine, "ultra-terminal sprouts" emanating from the endplates of muscles rendered inactive by chronic conduction block of the muscle nerve. Pestronk and Drachman saw increased branching of the motor nerve terminal and a consequent increase in endplate size in similar conditions. If these sprouts at the endplates of inactive muscles were functional, one might expect more transmitter to be released in response to nerve stimulation. We report here that both quantum content and spontaneous miniature endplate potential (m.e.p.p) frequency are increased at the terminals of inactive (disused) muscles.  相似文献   

20.
D D Hunter  V Shah  J P Merlie  J R Sanes 《Nature》1989,338(6212):229-234
A striking example of topographic specificity in synapse formation is the preferential reinnervation of original synaptic sites on denervated muscle fibres by regenerating motor axons. This specificity is mediated by the basal lamina of the synaptic cleft. A glycoprotein, s-laminin, has now been identified that is selectively associated with synaptic basal lamina and is recognized by motoneurons. Molecular cloning reveals that s-laminin is a novel homologue of laminin, a potent promoter of neurite outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号