首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 70 毫秒
1.
考虑如下m点边值问题解的存在性:u″=f(t,u,u′)+e(t)(00,i=1,2,…,m-2;0<ξ1<ξ2<…<ξm-2<1;∑m-2i=1aiξi≠1.通过对一族边值问题解的先验估计,利用Leray-Shauder连续性定理,得到解的存在性.  相似文献   

2.
讨论了一类带有变系数h(t)的二阶微分方程的三点边值问题,其中非线性项f是一个Quasi-Carathéodory-函数.通过构造一个特殊的锥,利用不动点指数理论获得该问题正解的存在性定理.  相似文献   

3.
本文在Banach空间E中,讨论二阶积分微分方程的Sturm—Liouville型边值问题.利用不动点原理得到两个存在性定理,其中定理2.1是[2]中定理的推广,定理2.2将定理2.1中的紧型条件做了改进.  相似文献   

4.
四阶两点常微分方程边值问题解的存在性   总被引:3,自引:0,他引:3  
讨论一类四阶两点常微分方程边值问题x(4)=f(t,x,x′,x″,x),边界条件的解的存在性,并给出相应的结论。其中边界条件如下:x(0)=A,x(1)=B,x″(0)=,x″(1)=, x(0)=A,x(1)=B,x″(0)=,x(1)=, x(0)=A,x(1)=B,x(0)=,x″(1)=, x(0)=A,x′(1)=B,x″(0)=,x″(1)=, x(0)=A,x′(1)=B,x″(0)=,x(1)=, x(0)=A,x′(1)=B,x(0)=,x″(1)=, x′(0)=A,x(1)=B,x″(0)=,x″(1)=, x′(0)=A,x(1)=B,x″(0)=,x(1)=, x′(0)=A,x(1)=B,x(0)=,x″(1)=。这些结论是在假设f(t,x,y,p,r)在形如[0,1]×Dx×Dy×Dp×I的区域内不变号的条件下给出的,其中Dx、Dy、Dp、I分别为某一区间。  相似文献   

5.
研究了一类非线性项依赖于一阶导数的二阶脉冲微分方程四点边值问题多个正解的存在性,运用L W不动点定理的推广定理,得到了边值问题三重正解存在的充分条件.  相似文献   

6.
设f:[0,1]×R^2→R满足Caratheodory条件,(1-t)e(t)∈L^1[0,1],0〈ξ1〈ξ2〈…ξm-2〈1,本文运用Leray-Schauder不动点定理来考虑m点边值问题 x″(t)=f(t,x(t),x(t)),+e(t),t∈(0,1),α0x(0)+α1x(0)=0,x(1)=∑i=1^m-2βix(ξi),C[0,1]∩C^1[0,1)解的存在性。  相似文献   

7.
二阶非线性常微分方程的奇异边值问题   总被引:3,自引:0,他引:3  
文中讨论类二阶非线性常微分方程的奇异边值问题,利用关于锥的新不动点定理建立了问题的解的存在性定理。  相似文献   

8.
利用锥上的不动点定理,讨论二阶三点泛函微分方程边值问题{x″(t)+f(t,x1)=0t∈[0,1]x(0)=0x(1)=ax(η)正解的存在性,其中0<η<1,0<α<1/n是给定的常数.  相似文献   

9.
研究了一类具有边值条件u(0)=0,u(1)-αu(η)=b形如u″+a(t)f(u)=0,-Δu′(tk)=Ik(u(tk))(k=1,2,…,m)的二阶脉冲微分方程三点边值问题解的存在性。在合适的假设条件下,利用Schauder不动点定理讨论了该脉冲微分方程解的存在性,并在此基础上通过相关引理给出了方程至少存在一个正解和无解的充分条件,即存在ε*0,使得当0bε*时,所考虑的脉冲微分方程边值问题至少存在一个正解;另外,当bε*时,边值问题无解。  相似文献   

10.
利用拓扑横截定理及先验界,研究了一类三阶微分方程边值问题,得到了边值问题的解的存在性定理。  相似文献   

11.
运用Leray-Schauder原理,获得了一类二阶非线性常微分方程三点边值问题解的存在性。  相似文献   

12.
 研究了一个二阶时滞微分方程的三点边值问题,给出了其至少有2个正解的充分条件.  相似文献   

13.
研究了一类分数阶微分方程边值问题。 应用Green函数,将分数阶微分方程边值问题转化为等价的积分方程, 利用Schaefer不动点定理和Leray Schauder不动点定理得到了该边值问题存在解的充分条件, 推广和完善了已有的结果。  相似文献   

14.
二阶非线性常微分方程的三点边值问题的一个存在定理   总被引:1,自引:1,他引:0  
获得了非线性二阶三点边值问题w^n(t) f(t,w(t)=0.0≤t≤i;w(0)=0,αw(η)=w(I)的一个正解存在定理,其中0<η<1,0<α<l/η。在此,非线性项f既不是超线性又不是次线性的。结论是通过使用锥拉伸与锥压缩型Krasnosel’sskii不动点定理获得的。某些现有的存在性结论得到了改进和推广。  相似文献   

15.
研究一类高分数阶微分方程边值问题的正解.通过一些锥上的不动点定理和等效的第二类Fredholm积分方程来研究这个方程正解的存在性和多重性,进而得到两个关于此类方程正解的定理.  相似文献   

16.
研究了非线性二阶三点边值问题u″(t) a(t)f(u)=0, t∈(0,1),u(0)=εu′(0), αu(η)=u(1)正解的存在性,其中ε≥0,0<η<1,0<α<(1 ε)/(η ε).运用锥上的不动点定理证明了f在超线性或次线性增长情形下该问题至少存在一个正解.  相似文献   

17.
研究了一类具有时滞的二阶微分方程三点边值问题。在构造新函数空间和新泛函的基础上,利用分析技巧和Avery Peterson不动点定理得到了该边值问题存在三个正解的充分条件,推广和完善了已有的结果。  相似文献   

18.
运用Leray Schauder不动点定理,讨论了边值问题 u″(t) λa(t)f(u)=0, 00,且λ充分小.  相似文献   

19.
应用上下解方法和不动点定理,给出奇异二阶常微分方程三点边值问题{x″(t)+f(t,x(t))=0,t∈(0,1);x(0)=0,x(1)=kx(η)存在C[0,1]正解的充分条件.这里η∈(0,1)是一个常数,f∈C((0,1)×[0,∞),[0,∞)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号