首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
During the 1950s, linear and multichain poly-α-amino acids were synthesized by polymerization of the corresponding N-carboxyamino acid anhydrides in solution in the presence of suitable catalysts. The resulting homo- and heteropolymers have since been widely employed as simple protein models. Under appropriate conditions, poly-α-amino acids, in the solid state and in solution, were found to acquire conformations of an α-helix and of β-parallel and antiparallel pleated sheets, or to exist as random coils. Their use in experimental and theoretical investigations of helix-coil transitions helped to shed new light on the mechanisms involved in protein denaturation. Conformational fluctuations of peptides in solution were analysed theoretically and studied experimentally by nonradiative energy-transfer techniques. Poly-α-amino acids played an important role in the deciphering of the genetic code. In addition, analysis of the antigenicity of poly-α-amino acids led to the elucidation of the factors determining the antigenicity of proteins and peptides. The synthetic procedures developed made possible the preparation of immobilized enzymes which were shown to be of considerable use as heterogeneous biocatalysts in the chemical and pharmaceutical industry. Interest in the biological and physicochemical characteristics of poly-α-amino acids was recently renewed because of the reported novel findings that some copolymers of amino acids are effective as drugs in multiple sclerosis, and that glutamine repeats and reiteration of other amino acids occur in inherited neurodegenerative diseases.  相似文献   

2.
The prolyl oligopeptidase family   总被引:6,自引:0,他引:6  
A group of serine peptidases, the prolyl oligopeptidase family, cannot hydrolyze peptides containing more than about 30 residues. This group is unrelated to the classical trypsin and subtilisin families, and includes dipeptidyl peptidase IV, acylaminoacyl peptidase and oligopeptidase B, in addition to the prototype prolyl oligopeptidase. The recent crystal structure determination of prolyl oligopeptidase (80 kDa) has shown that the enzyme contains a peptidase domain with an α/β hydrolase fold, and its catalytic triad is covered by the central tunnel of an unusual seven-bladed β-propeller. This domain operates as a gating filter, excluding large, structured peptides from the active site. The binding mode of substrates and the catalytic mechanism differ from that of the classical serine peptidases in several features. The members of the family are important targets of drug design. Prolyl oligopeptidase is involved in amnesia, depression and blood pressure control, dipeptidyl peptidase IV in type 2 diabetes and oligopeptidase B in trypanosomiasis. Received 8 August 2001; received after revision 19 September 2001; accepted 21 September 2001  相似文献   

3.
Among the scorpion venom components whose function are poorly known or even show contrasting pharmacological results are those called “orphan peptides”. The most widely distributed are named β-KTx or scorpine-like peptides. They contain three disulfide bridges with two recognizable domains: a freely moving N-terminal amino acid sequence and a tightly folded C-terminal region with a cysteine-stabilized α/β (CS-αβ) motif. Four such peptides and three cloned genes are reported here. They were assayed for their cytolytic, antimicrobial and K + channel-blocking activities. Two main characteristics were found: the existence of an unusual structural and functional diversity, whereby the full-length peptide can lyse cells or kill microorganisms, and a C-terminal domain containing the CS-αβ motif that can block K + channels. Furthermore, sequence analyses and phylogenetic reconstructions are used to discuss the evolution of this type of peptide and to highlight the versatility of the CS-αβ structures. Received 13 August 2007; received after revision 30 October 2007; accepted 2 November 2007  相似文献   

4.
Defensins are a major family of antimicrobial peptides found throughout the phylogenetic tree. From the spider species: Cupiennius salei, Phoneutria reidyi, Polybetes pythagoricus, Tegenaria atrica, and Meta menardi, defensins belonging to the ‘ancestral’ class of invertebrate defensins were cloned and sequenced. The deduced amino acid sequences contain the characteristic six cysteines of this class of defensins and reveal precursors of 60 or 61 amino acid residues. The mature peptides consist of 37 amino acid residues, showing up to 70% identities with tick and scorpion defensins. In C. salei, defensin mRNA was found to be constitutively expressed in hemocytes, ovaries, subesophageal nerve mass, hepatopancreas, and muscle tissue. This is the first report presenting and comparing antimicrobial peptides belonging to the family of defensins from spiders.  相似文献   

5.
Ligand recognition by the I domain-containing integrins   总被引:11,自引:0,他引:11  
Seven of the integrin α subunits described to date, α 1 , α 2 , α L , α X , α d , α M and α E , contain a highly conserved I (or A) domain of approximately 200 amino acid residues inserted near the amino-terminus of the subunit. As the result of a variety of independent experimental approaches, a large body of data has recently accumulated that indicates that the I domains are independent, autonomously folding domains capable of directly binding ligands that play a necessary and important role in ligand binding by the intact integrins. Recent crystallographic studies have elucidated the structures of recombinant α M and α L I domains and also delineated a novel divalent cation-binding motif within the I domains (metal ion-dependent adhesion site, MIDAS) that appears to mediate the divalent cation binding of the I domains and the I domain-containing integrins to their ligands.  相似文献   

6.
CSTX-9 (68 residues, 7530.9 Da) is one of the most abundant toxic polypeptides in the venom of the wandering spider Cupiennius salei. The amino acid sequence was determined by Edman degradation using reduced and alkylated CSTX-9 and peptides generated by cleavages with endoproteinase Asp-N and trypsin, respectively. Sequence comparison with CSTX-1, the most abundant and the most toxic polypeptide in the crude spider venom, revealed a high degree of similarity (53% identity). By means of limited proteolysis with immobilised trypsin and RP-HPLC, the cystine-containing peptides of CSTX-9 were isolated and the disulphide bridges were assigned by amino acid analysis, Edman degradation and nanospray tandem mass spectrometry. The four disulphide bonds present in CSTX-9 are arranged in the following pattern: 1-4, 2-5, 3-8 and 6-7 (Cys6-Cys21, Cys13-Cys30, Cys20-Cys48, Cys32-Cys46). Sequence comparison of CSTX-1 with CSTX-9 clearly indicates the same disulphide bridge pattern, which is also found in other spider polypeptide toxins, e.g. agatoxins (ω-AGA-IVA, ω-AGA-IVB, μ-AGA-I and μ-AGA-VI) from Agelenopsis aperta, SNX-325 from Segestria florentina and curtatoxins (CT-I, CT-II and CT-III) from Hololena curta. CSTX-1/CSTX-9 belong to the family of ion channel toxins containing the inhibitor cystine knot structural motif. CSTX-9, lacking the lysine-rich C-terminal tail of CSTX-1, exhibits a ninefold lower toxicity to Drosophila melanogaster than CSTX-1. This is in accordance with previous observations of CSTX-2a and CSTX-2b, two truncated forms of CSTX-1 which, like CSTX-9, also lack the C-terminal lysine-rich tail. Received 23 July 2001; accepted 31 July 2001  相似文献   

7.
Five types of zymogens of pepsins, gastric digestive proteinases, are known: pepsinogens A, B, and F, progastricsin, and prochymosin. The amino acid and/or nucleotide sequences of more than 50 pepsinogens other than pepsinogen B have been determined to date. Phylogenetic analyses based on these sequences indicate that progastricsin diverged first followed by prochymosin, and that pepsinogens A and F are most closely related. Tertiary structures, clarified by X-ray crystallography, are commonly bilobal with a large active-site cleft between the lobes. Two aspartates in the center of the cleft, Asp32 and Asp215, function as catalytic residues, and thus pepsinogens are classified as aspartic proteinases. Conversion of pepsinogens to pepsins proceeds autocatalytically at acidic pH by two different pathways, a one-step pathway to release the intact activation segment directly, and a stepwise pathway through a pseudopepsin(s). The active-site cleft is large enough to accommodate at least seven residues of a substrate, thus forming S4 through S3′ subsites. Hydrophobic and aromatic amino acids are preferred at the P1 and P1′ positions. Interactions at additional subsites are important in some cases, for example with cleavage of κ-casein by chymosin. Two potent naturally occurring inhibitors are known: pepstatin, a pentapeptide from Streptomyces, and a unique proteinous inhibitor from Ascaris. Pepsinogen genes comprise nine exons and may be multiple, especially for pepsinogen A. The latter and progastricsin predominate in adult animals, while pepsinogen F and prochymosin are the main forms in the fetus/infant. The switching of gene expression from fetal/infant to adult-type pepsinogens during postnatal development is noteworthy, being regulated by several factors, including steroid hormones. Received 25 May 2001; received after revision 27 August 2001; accepted 30 August 2001  相似文献   

8.
Synthetic peptides derived from the C-terminal end of the human complement serine protease C1s were analysed by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy. Circular dichroism indicates that peptides 656-673 and 653-673 are essentially unstructured in water and undergo a coil-to-helix transition in the presence of increasing concentrations of trifluoroethanol. Two-dimensional NMR analyses performed in water/trifluoroethanol solutions provide evidence for the occurrence of a regular α-helix extending from Trp659 to Ser668 (peptide 656-673), and from Tyr656 to Ser668 (peptide 653-673), the C-terminal segment of both peptides remaining unstructured under the conditions used. Based on these and other observations, we propose that the serine protease domain of C1s ends in a 13-residue α-helix (656Tyr-Ser668) followed by a five-residue C-terminal extension. The latter appears to be flexible and is probably locked within C1s through a salt bridge involving Glu672. Received 19 November 1997; accepted 24 November 1997  相似文献   

9.
Gastrulation is characterized by dramatic cell migration which is thought to require the interaction of cell adhesion molecules with extracellular molecules. We have tested two novel peptides, a fibronectin peptide and a fibronectin receptor peptide, for their effects on gastrulation of the leopard frogRana pipiens. The fibronectin peptide DRVPHSRNSIT corresponds to residues 1373–1383 of the cell-binding domain of fibronectin; the receptor peptide DLYYLMDL corresponds to residues 124–131 of 1 subunit of a variety of integrins including 51. Either of these peptides significantly inhibited gastrulation after being microinjected into mid-blastulae. These results indicate that these sequences may correspond to the ligand/receptor interaction sites of fibronectin and its receptor(s).  相似文献   

10.
A Caribbean cyanobacterium,Hormothamnion enteromorphoides, was found to produce a complex mixture of ichthyotoxic peptides, perhaps explaining the apparent absence of predation upon these potentially palatable life forms. Bioassay-guided fractionation was used to isolate these toxic and antimicrobial natural products, and a variety of techniques including HR FAB mass spectrometry, 2D-NMR, traditional hydrolysis-amino acid analysis, and several chemical reactions were used to define the basic structural features of the major peptide, hormothamnin A. Hormothamnin A is a cyclic undecapeptide containing six common and five uncommon or new amino acid residues. HPLC analyses indicate that the relative proportions of these peptide natural products remain relatively constant between different collection locations and years, however, they do vary seasonally. Clonal isolates of this cyanobacterium in culture produce the full spectrum of toxic peptides.  相似文献   

11.
The production of antimicrobial peptides represents a first-line host defense mechanism of innate immunity that is widespread in nature. Only recently such effectors were isolated in crustacean species, whereas numerous antimicrobial peptides have been characterized from other arthropods, both insects and chelicerates. This review presents findings on a family of antimicrobial peptides, named penaeidins, isolated from the shrimp Penaeus vannamei. Their structure and antimicrobial properties as well as their immune function will be discussed through analyses of penaeidin gene expression and peptide distribution upon microbial challenge. Received 21 January 2000; received after revision 10 March 2000; accepted 10 March 2000  相似文献   

12.
The amino acid histidine is an excellent buffer and is therefore included in several organ preservation solutions used in transplantation medicine. However, when used at concentrations as in these solutions, histidine has a marked injurious potential. Therefore, we here assessed the mechanism of histidine-induced cell injury and searched for ways to use the buffering power of histidine but avoid histidine toxicity. When cultured hepatocytes were incubated in HTK solution or in modified Krebs-Henseleit buffer containing 198 mM L-histidine at 37°C, most cells lost viability within 3 h (LDH release 86 ± 7% and 89 ± 5%, respectively). This injury was accompanied by marked lipid peroxidation, and was strongly inhibited by hypoxia, by the antioxidants trolox, butylated hydroxytoluene and N-acetylcysteine and by the membrane-permeable iron chelators 2,2′-dipyridyl, 1,10-phenanthroline, LK 614, LK 616 and deferoxamine. Thus, histidine-induced cell injury appears to be mediated by an iron-dependent formation of reactive oxygen species. D-Histidine, imidazol and L-histidine methyl ester also elicited marked injury, while the N-substituted derivatives Nα-acetyl-L-histidine and tert-butyl-oxycarbonylhistidine and histidine-containing dipeptides showed almost no toxicity. Histidine toxicity, its iron dependence and the superiority of Nα-acetyl-L-histidine were also evident during/after cold (4°C) incubations. Therefore, we suggest the addition of iron chelators to histidine-containing solutions, and/or replacing histidine with Nα-acetyl-L-histidine in organ preservation solutions. Received 23 October 2006; accepted 21 November 2006  相似文献   

13.
Sterol carrier protein-2: structure reveals function   总被引:5,自引:0,他引:5  
The multiple actions of sterol carrier protein-2 (SCP-2) in intracellular lipid circulation and metabolism originate from its gene and protein structure. The SCP-x/pro-SCP-2 gene is a fusion gene with separate initiation sites coding for 15-kDa pro-SCP-2 (no enzyme activity) and 58-kDa SCP-x (a 3-ketoacyl CoA thiolase). Both proteins share identical cDNA and amino acid sequences for 13-kDa SCP-2 at their C-termini. Cellular 13-kDa SCP-2 derives from complete, posttranslational cleavage of the 15-kDa pro-SCP-2 and from partial posttranslational cleavage of 58-kDa SCP-x. Putative physiological functions of SCP-2 have been proposed on the basis of enhancement of intermembrane lipid transfer (e.g., cholesterol, phospholipid) and activation of enzymes involved in fatty acyl CoA transacylation (cholesterol esters, phosphatidic acid) in vitro, in transfected cells, and in genetically manipulated animals. At least four important SCP-2 structural domains have been identified and related to specific functions. First, the 46-kDa N-terminal presequence present in 58-kDa SCP-x is a 3-ketoacyl-CoA thiolase specific for branched-chain acyl CoAs. Second, the N-terminal 20 amino acid presequence in 15-kDa pro-SCP-2 dramatically modulates the secondary and tertiary structure of SCP-2 as well as potentiating its intracellular targeting coded by the C-terminal peroxisomal targeting sequence. Third, the N-terminal 32 amino acids form an amphipathic a-helical region, one face of which represents a membrane-binding domain. Positively charged amino acid residues in one face of the amphipathic helices allow SCP-2 to bind to membrane surfaces containing anionic phospholipids. Fourth, the hydrophobic faces of the N-terminal amphipathic a helices along with beta strands 4, 5, and helix D form a ligand-binding cavity able to accommodate multiple types of lipids (e. g., fatty acids, fatty acyl CoAs, cholesterol, phospholipids, isoprenoids). Two-dimensional 1H-15N heteronuclear single quantum coherence spectra of both apo-SCP-2 and of the 1:1 oleate-SCP-2 complex, obtained at pH 6.7, demonstrated the homogenous formation of holo-SCP-2. While comparison of the apo- and holoprotein amide fingerprints revealed about 60% of the resonances remaining essentially unchanged, 12 assigned amide residues underwent significant chemical-shift changes upon oleic acid binding. These residues were localized in three regions: the juncture of helices A and B, the mid-section of the beta sheet, and the interface formed by the region of beta strands 4, 5, and helix D. Circular dichroism also showed that these chemical-shift changes, upon oleic acid binding, did not alter the secondary structure of SCP-2. The nuclear magnetic resonance chemical shift difference data, along with mapping of the nearby hydrophobic residues, showed the oleic acid-binding site to be comprised of a pocket created by the face of the beta sheet, helices A and B on one end, and residues associated with beta strands 4, 5, and helix D at the other end of the binding cavity. Furthermore, the hydrophobic nature of the previously ill-defined C-terminus suggested that these 20 amino acids may form a 'hydrophobic cap' which closes around the oleic acid upon binding. Thus, understanding the structural domains of the SCP-x/pro-SCP-2 gene and its respective posttranslationally processed proteins has provided new insights into their functions in intracellular targeting and metabolism of lipids.  相似文献   

14.
The preform of the rabbit sterol carrier protein 2 (pre-rSCP2) was cloned, the uniformly 15N-labelled protein expressed in Escherichia coli and studied by three-dimensional 15N-resolved nuclear magnetic resonance spectroscopy. In spite of its low solubility in aqueous solution of only ∼0.3 mM, sequential 15N and 1H backbone resonance assignments were obtained for 105 out of the 143 residues. From comparison of the sequential and medium-range nuclear Overhauser effects (NOEs) in the two proteins, all regular secondary structures previously determined in mature human SCP2 (hSCP2) [Szyperski et al. (1993) FEBS Lett. 335: 18–26] were also identified in pre-rSCP2. Near-identity of the backbone 15N and 1H chemical shifts and 1 : 1 correspondence of 24 long-range NOEs to backbone amide groups in the two proteins show that the residues 21 – 143 adopt the same globular fold in pre-rSCP2 and mature hSCP2. The N-terminal 20-residue leader peptide of pre-rSCP2 is flexibly disordered in solution and does not observably affect the conformation of the polypeptide segment 21 – 143. Received 11 May 1998; accepted 15 May 1998  相似文献   

15.
Three novel glycine-rich peptides, named ctenidin 1–3, with activity against the Gram-negative bacterium E. coli, were isolated and characterized from hemocytes of the spider Cupiennius salei. Ctenidins have a high glycine content (>70%), similarly to other glycine-rich peptides, the acanthoscurrins, from another spider, Acanthoscurria gomesiana. A combination of mass spectrometry, Edman degradation, and cDNA cloning revealed the presence of three isoforms of ctenidin, at least two of them originating from simple, intronless genes. The full-length sequences of the ctenidins consist of a 19 amino acid residues signal peptide followed by the mature peptides of 109, 119, or 120 amino acid residues. The mature peptides are post-translationally modified by the cleavage of one or two C-terminal cationic amino acid residue(s) and amidation of the newly created mature C-terminus. Tissue expression analysis revealed that ctenidins are constitutively expressed in hemocytes and to a small extent also in the subesophageal nerve mass.  相似文献   

16.
The ability of three isoforms of protein kinase CK1 (α, γ1, and δ) to phosphorylate the N-terminal region of p53 has been assessed using either recombinant p53 or a synthetic peptide reproducing its 1–28 sequence. Both substrates are readily phosphoylated by CK1δ and CK1α, but not by the γ isoform. Affinity of full size p53 for CK1 is 3 orders of magnitude higher than that of its N-terminal peptide (K m 0.82 μM vs 1.51 mM). The preferred target is S20, whose phosphorylation critically relies on E17, while S6 is unaffected despite displaying the same consensus (E-x-x-S). Our data support the concept that non-primed phosphorylation of p53 by CK1 is an isoform-specific reaction preferentially affecting S20 by a mechanism which is grounded both on a local consensus and on a remote docking site mapped to the K221RQK224 loop according to modeling and mutational analysis.  相似文献   

17.
The crystal structure of the K+ channel KcsA explains many features of ion channel function. The selectivity filter corresponds to a narrow region about 12 Å long and 3 Å wide, lined by carbonyl groups of the peptide backbone, through which a K+ ion can only move in a dehydrated form. The selectivity filter opens into a central, water-filled cavity leading to a gating site on the intracellular side of the channel. The channel is tetrameric, each monomer containing two transmembrane a helices, M1 and M2. Helix M1 faces the lipid bilayer and helix M2 faces the central channel pore; the M2 helices participate in subunit-subunit interactions. Helices M1 and M2 in each subunit pack as a pair of antiparallel coils with a heptad repeat, but the M2 helices of neighbouring subunits show fewer interactions, crossing at an angle of about –40°. Trp residues at the ends of the transmembrane helices form clear girdles on the two faces of the membrane, which, together with girdles of charged residues, define a hydrophobic thickness of about 37 Å for the channel. Binding constants for phosphatidylcholines to KcsA vary with fatty acyl chain length, the optimum chain length being C22. A phosphatidylcholine with this chain length gives a bilayer of thickness about 34 Å in the liquid crystalline phase, matching the hydrophobic thickness of the protein. However, a typical biological membrane has a hydrophobic thickness of about 27 Å. Thus either the transmembrane a helices of KcsA are more tilted in the native membrane than they are in the crystal structure, or the channel is under stress in the native membrane. The efficiency of hydrophobic matching between KcsA and the surrounding lipid bilayer is high over the chain length range C10–C24. The channel requires the presence of some anionic lipids for function, and fluorescence quenching studies show the presence of two classes of lipid binding site on KcsA; at one class of site (nonannular sites) anionic phospholipids bind more strongly than phosphatidylcholine, whereas at the other class of site (annular sites) phosphatidylcholines and anionic phospholipids bind with equal affinity.  相似文献   

18.
β-Glucosidases (3.2.1.21) are found in all domains of living organisms, where they play essential roles in the removal of nonreducing terminal glucosyl residues from saccharides and glycosides. β-Glucosidases function in glycolipid and exogenous glycoside metabolism in animals, defense, cell wall lignification, cell wall β-glucan turnover, phytohormone activation, and release of aromatic compounds in plants, and biomass conversion in microorganisms. These functions lead to many agricultural and industrial applications. β-Glucosidases have been classified into glycoside hydrolase (GH) families GH1, GH3, GH5, GH9, and GH30, based on their amino acid sequences, while other β-glucosidases remain to be classified. The GH1, GH5, and GH30 β-glucosidases fall in GH Clan A, which consists of proteins with (β/α)8-barrel structures. In contrast, the active site of GH3 enzymes comprises two domains, while GH9 enzymes have (α/α)6 barrel structures. The mechanism by which GH1 enzymes recognize and hydrolyze substrates with different specificities remains an area of intense study.  相似文献   

19.
One of the central elements of excitation-contraction coupling, the voltage-sensing dihydropyridine receptor, is believed to exist as a high-molecular-mass complex in the triad junction. Although freeze-fracture electron microscopical analysis suggests a tetrad complex, no direct biochemical evidence exists demonstrating the actual size of the native membrane complex. Using a combination of various two-dimensional gel electrophoresis techniques, we show here that the principal α 1-subunit of the dihydropyridine receptor and its auxiliary α 2-subunit form a triad complex of approximately 2800 kDa under native conditions. Established Ca2+-ATPase tetramers and calsequestrin monomers were employed for the internal standardization of the gel systems used. Thus, the large voltage-sensing complex appears to be tightly associated, since it does not disintegrate during subcellular fractionation and native electrophoresis procedures. Our findings support the cell biological hypothesis that native dihydropyridine receptor units form a tetrad structure within the transverse tubules. Received 10 October 2000; revised 28 November 2000; accepted 4 January 2001  相似文献   

20.
Bromelain: biochemistry, pharmacology and medical use   总被引:10,自引:0,他引:10  
Bromelain is a crude extract from the pineapple that contains, among other components, various closely related proteinases, demonstrating, in vitro and in vivo, antiedematous, antiinflammatory, antithrombotic and fibrinolytic activities. The active factors involved are biochemically characterized only in part. Due to its efficacy after oral administration, its safety and lack of undesired side effects, bromelain has earned growing acceptance and compliance among patients as a phytotherapeutical drug. A wide range of therapeutic benefits has been claimed for bromelain, such as reversible inhibition of platelet aggregation, angina pectoris, bronchitis, sinusitis, surgical traumas, thrombophlebitis, pyelonephritis and enhanced absorption of drugs, particularly of antibiotics. Biochemical experiments indicate that these pharmacological properties depend on the proteolytic activity only partly, suggesting the presence of nonprotein factors in bromelain. Recent results from preclinical and pharmacological studies recommend bromelain as an orally given drug for complementary tumor therapy: bromelain acts as an immunomodulator by raising the impaired immunocytotoxicity of monocytes against tumor cells from patients and by inducing the production of distinct cytokines such as tumor necrosis factor-α, interleukin (Il)-1β, Il-6, and Il-8. In a recent clinical study with mammary tumor patients, these findings could be partially confirmed. Especially promising are reports on animal experiments claiming an antimetastatic efficacy and inhibition of metastasis-associated platelet aggregation as well as inhibition of growth and invasiveness of tumor cells. Apparently, the antiinvasive activity does not depend on the proteolytic activity. This is also true for bromelain effects on the modulation of immune functions, its potential to eliminate burn debris and to accelerate wound healing. Whether bromelain will gain wide acceptance as a drug that inhibits platelet aggregation, is antimetastatic and facilitates skin debridement, among other indications, will be determined by further clinical trials. The claim that bromelain cannot be effective after oral administration is definitely refuted at this time. Received 25 August 2000; received after revision 29 March 2001; accepted 30 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号