首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
采用自配模拟含磷废水,通过批实验和正交实验探讨影响铁碳微电解系统对废水中TP去除效果的因素及其适宜因素值组合。研究结果表明:当废水初始TP浓度为5 mg/L,活性炭加入量为0. 03 g/m L时,在其pH值为3. 0,搅拌强度为110 r/min的条件下,吸附至25 min时,活性炭对模拟废水中TP的吸附基本达到饱和,其对TP的吸附去除率在19. 8%左右。不考虑活性炭对模拟废水中TP的吸附作用,单因素影响的研究表明,铁碳微电解系统对废水中TP去除效果较好的适宜pH值为3. 0,铁碳比为1∶1. 5,搅拌强度为110 r/min;正交实验显示,各因素对铁碳微电解系统去除TP影响程度由大到小的顺序依次为:初始pH值铁碳质量比反应时间搅拌强度。采用最佳参数组合的铁碳微电解系统对废水中TP的去除率为20. 91%。  相似文献   

2.
目的研究铁碳微电解对采油废水进行预处理的影响因素及各个因素的主次关系.方法调节采油废水pH值为酸性,向采油废水中投加经过活化处理的铁屑和吸附饱和的碳粉,曝气反应一段时间;在去除铁屑和碳粉之后,再将pH值调节为碱性,搅拌后静置40 min,取上清液进行检测分析.通过正交试验和单因素试验确定pH值、反应时间、铁碳质量比和铁投加量对COD去除率的影响.结果通过正交试验得出铁碳微电解预处理采油废水的影响因素顺序为:pH值铁投加量反应时间铁碳质量比;在最佳条件pH为4,铁投加量为0.167 g·mL-1,反应时间为30 min,铁碳质量比为3:1时,COD去除率可以达到54.3%.结论采用铁屑和碳粉对采油废水进行微电解可以取得良好的处理效果,其中pH值和铁投加量对COD去除率有较大影响.  相似文献   

3.
崔俊峰  段文杰  王俊  赵亮 《河南科学》2019,37(2):203-206
利用铁(Fe(0))-碳(C)微电解和芬顿(Fenton)氧化联用处理含磷废水,分别进行了单因素试验和正交试验.分析了废水pH值、铁碳质量比、反应时间、曝气量在处理废水时的影响,结果表明,废水pH值和反应时间对废水中磷的去除率影响最大.同时,确定了废水pH值为4,铁碳质量比10∶1,反应时间60 min,曝气量1.5 L?min~(-1)为最佳处理条件.  相似文献   

4.
以厦门某印染企业的生产废水为研究对象,采用微电解—UV/Fenton法进行了印染废水预处理的试验研究.通过正交实验得到了微电解反应的最佳条件:pH值为2,铁碳质量比为2,反应时间为90min,曝气量为32L/min.处理后色度去除率可达到90%以上,CODCr去除率在65%左右.向微电解反应的出水中投入双氧水进行UV/Fenton反应,双氧水(质量分数为30%)最佳投入量为20mL/L,处理后色度可降至10倍以内,CODCr可降至600mg/L左右.通过预处理的印染废水可生化性能得到大大提高,B/C由处理前的0.34提高到0.62.  相似文献   

5.
以6硝(6硝基1,2重氮氧基萘4磺酸)生产过程中产生的1,2,4酸废水作为研究对象,将铁/炭微电解和Fenton氧化技术结合进行废水处理,研究了微电解的pH值、反应时间、反应温度、铁炭质量比、活性炭用量的影响以及Fenton氧化的pH值和H2O2用量,并进行了处理工艺的经济性分析。通过单因素实验确定1,2,4酸废水处理的工艺条件为铁碳微电解的pH值为1时,铁碳质量比为3〖DK〗∶1,反应3 h,过滤,调pH值为3,添加废水体积2.5%的H2O2(质量分数为30%),反应1 h,电石渣调pH值7~8,过滤。该工艺对废水COD的去除率可提高到95%以上,废水处理成本5.4元/m3。  相似文献   

6.
通过加入新型稳定剂磷酸铵,研究了常温水相中合成过氧化钙的新工艺.讨论了原料配比、浓度、温度、时间、稳定剂加入量等因素对过氧化钙产率和纯度的影响,在最佳条件下合成的CaO2纯度大于65%.采用CaO2产品处理含铜、镉、铅、锌离子的工业废水,通过原子吸收分光光度计测定处理前后废水中铜、镉、铅、锌离子的浓度.结果表明,在室温下,过氧化钙用量与重金属离子摩尔比为2∶1时,处理60 min,处理过程不调节pH的条件下,含铜54.12 mg/L、镉36.58 mg/L、铅22.74 mg/L、锌30.10 mg/L的废水经一次处理后,铜、镉、铅、锌去除率均达到99.5%以上,且铜、镉、铅、锌浓度均达到国家一级水排放标准.  相似文献   

7.
通过改变初始pH值、曝气搅拌时间、混凝pH值和铁碳比等条件,研究了铁碳内电解对电镀废水的处理效果。试验结果表明:当原水初始pH值为3.0,曝气搅拌时间为45min,混凝pH值为8.5,铁碳比为1:1时,电镀废水中色度平均去除率达90%以上,化学需氧量(COD)去除率最高可达41%。  相似文献   

8.
铁碳微电解预处理餐饮废水实验研究   总被引:1,自引:0,他引:1  
针对餐饮废水的水质特点,在实验室水平下利用铁碳微电解工艺对其进行预处理研究,考察了pH值、铁碳质量比及反应时间等因素对废水处理效果的影响。研究表明铁碳微电解处理餐饮废水反应的最佳参数为:反应时间30min、pH为3、铁碳质量比为1:1.5,在此条件下对SS去除率为90.01%,对COD的去除率为66.54%,为后续工艺的处理降低了难度与费用。  相似文献   

9.
铁碳微电解法预处理糠醛废水的影响因素   总被引:4,自引:0,他引:4  
采用铁碳微电解法处理糠醛废水, 并考察了进水pH值、反应时间、 铁屑类型等因素对微电解处理效果的影响. 结果表明, 在不改变原水pH值, 铁碳体积比1 ∶4, 铁为铸铁屑, 反应时间为30 min, 曝气的实验条件下, 废水CODCr的去除率可达75%, BOD5/CODCr由原水的0.38增大为0.6, 废水的可生化性 显著提高.  相似文献   

10.
某企业将汽车4S店回收的油水混合物,经过蒸馏得到的最轻组分,即轻油废水,其COD值高,气味重。采用絮凝剂、铁碳微电解、Fenton试剂与DSA电化学法多级复合方法,通过单因素试验与正交试验,确定了絮凝剂最佳的量(聚合氯化铝浓度5%∶180 mL·L~(-1)、聚丙烯酰胺浓度1%∶4 mL·L~(-1)),在加入絮凝剂的条件下,COD_(cr)去除率可达到38.5%;铁碳微电解的最佳反应条件为铁碳投加量为30 g·L~(-1),铁碳质量比为1∶1,反应时间为1.5 h,pH为5,此时COD_(cr)去除率可达到61.5%;铁碳微电解/过氧化氢类Fenton法的最佳反应条件为过氧化氢(30%)167 mL·L~(-1),pH为5,反应时间为0.5 h,此时COD_(cr)去除率可达到85.4%;DSA电化学法电解3 h,总的COD_(cr)去除率可达到92.31%。  相似文献   

11.
污水厂进水易生物降解有机物(SS)含量低时难以保证污水处理效率,本文主要针对提高Ss方法进行研究。采用铁碳微电解法作为污水的预处理工艺,考察不同pH、停留时间和Fe/C比对微电解系统处理效能的影响。结果表明,在进水pH为4,停留时间为90 min,Fe/C为4:1时,SS提高率为35.4%,COD去除率为51.8%。模拟污水厂处理工艺,二沉池出水COD值为77.4 mg/L,增加铁碳微电解系统后二沉池出水COD值为48.9 mg/L。  相似文献   

12.
铁碳微电解处理印染废水的研究   总被引:1,自引:0,他引:1  
采用铁碳微电解法对金橙G模拟印染废水进行预处理,研究影响铁碳微电解处理废水的各种因素.实验探讨溶液浓度、初始pH值、铁碳比及反应时间对废水COD(化学需氧量)及色度去除率的影响,以确定最佳工艺条件.结果表明:铁碳微电解法预处理染料废水的最佳初始pH值为2,最佳铁碳比1 ∶ 1,适宜的反应时间为60 min,此时,COD...  相似文献   

13.
利用廉价生物吸附剂去除污水中Pb2+和Zn2+的技术,研究了食用菌菌糠的吸附特性,调查污水pH、重金属初始浓度、吸附剂用量、吸附时间和温度对其吸附性能的影响.结果表明,在食用菌菌糠吸附剂用量分别为16g/L和12g/L,pH值分别为5和6,初始重金属质量浓度为20mg/L,吸附时间为3h,25℃条件下,达到了最大吸附量,对Pb2+和Zn2+的去除率分别达到92.79%和88.96%,处理后的Pb2+和Zn2+质量浓度分别为1.442mg/L和2.208mg/L,接近污水综合排放标准(GB8978—1996)中的排放质量浓度1mg/L和2mg/L.食用菌菌糠对Pb2+和Zn2+的吸附等温线符合Fleundlich模式.  相似文献   

14.
Fe/C微电解-Fenton法预处理提高垃圾渗滤液可生化性的研究   总被引:1,自引:0,他引:1  
研究采用Fe/C微电解-Fenton法对老龄城市生活垃圾渗滤液进行预处理,提高其可生化性.通过调整初始pH,Fe-C投加量,铁碳质量比,H_2O_2投加量及反应时间考察其对垃圾渗滤液处理的效果,同时对Fe/C微电解,Fenton以及Fe/C微电解-Fenton的处理效果进行对比研究.实验结果表明,Fe/C微电解-Fenton法预处理表现出最好的处理性能,其最佳处理条件为:初始pH 3,Fe-C投加量52g/L,Fe/C 3,H_2O_2投加量12mL/L,接触反应1h后,COD去除率达到75%.此外,渗滤液的BOD5/COD也从0.075提高到0.250.  相似文献   

15.
蒸汽加压混凝土废料(AACW)是一种建材工业的废弃物,主要成分中含钙、铝、铁的氧化物,同时由于材料经过发泡具有较大的比表面积.本文以该废料研磨加工的粉末作为吸附剂,研究了废料对中3mg/L含Cd2+废水的去除效果.通过XRF,SEM,XRD手段探究了AACW的结构和性能,并研究了该材料在不同反应条件下对低浓度Cd2+的吸附性能.结果表明,当投加量为10 g/L,吸附时间为90 min时,Cd2+的去除率可达到97%.吸附反应符合Langmuir方程和拟二级动力学方程,且吸附过程中同时存在着物理吸附和化学吸附的机理.此外,AACW对工业污水中Cu 2+、 Pb2+和Zn2+等其它重金属离子表现出广泛的去除效果. 从建筑行业回收的AACW可以作为一种有应用前景的低成本吸附剂去除水溶液中的有毒重金属.  相似文献   

16.
利用玉米秸秆制备生物炭,进行吸附重金属Cd~(2+)和Pb~(2+)试验,分析生物炭吸附重金属的吸附量及吸附效率.试验结果表明:Cd~(2+)的最优吸附条件是pH为5,120 min吸附平衡.Pb~(2+)的最优吸附条件是pH为1,60 min吸附平衡;生物炭对养殖废水中Pb~(2+)和Cd~(2+)具有较好的吸附效果,吸附去除率分别为85%和98%,生物炭对Pb~(2+)的吸附效果明显优于Cd~(2+);Cd~(2+)和Pb~(2+)在秸秆生物炭表面上的吸附过程符合Freundlich等温吸附模型.  相似文献   

17.
通过吸附、沉淀和光催化法联合处理鞣酸Pb(Ⅱ)废水,考察了各因素对COD_(Cr)的影响。结果表明:D201树脂最佳用量20 g/L;CaO最佳用量0.67 g/L;光催化反应的最佳条件为:pH为7,P25用量1.6 g/L,H_2O_2用量6 ml/L。树脂吸附反应可除去98.2%的Pb~(2+),COD_(Cr)由4500.0 mg/L降低到1154.9 mg/L;吸附处理过的废水用CaO处理,COD_(Cr)降低到495.0 mg/L;沉淀处理过的废水用光催化处理,COD_(Cr)降低到87.5 mg/L。在最优的光催化反应条件下,废水连续反应8次,仍然可以达到GB14374—93污水排放标准。D201树脂可用0.1 mol/L的盐酸和15%的NH_4Cl洗脱再生。  相似文献   

18.
北仑河口附近海域冬季海洋环境质量评价   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】调查和评价广西北仑河口近岸海域的污染状况。【方法】2011年11月从广西北仑河口附近海域在大潮期采集20个海水样品和10个表层沉积物样品,在小潮期采集17个海水样品,分别测定海水中13种元素和沉积物中10种元素的含量,采用单因子指数法和内梅罗指数法对海水及表层沉积物污染特征进行分析和评价。【结果】在大潮期,该海域中海水平均单项污染程度依次为铅锌汞溶解氧化学耗氧量无机氮pH铜油类镉无机磷砷总铬;小潮期海域中海水平均单项污染程度依次为无机磷无机氮油类溶解氧pH化学耗氧量锌汞铅铜镉砷铬;表层沉积物中平均单向污染指数大小顺利分别为石油类铅镉硫化物有机碳锌铜砷汞铬,均达到国家一类沉积物标准,主要污染物为石油类、铅、镉。【结论】广西北仑河口近岸海域海水在大潮期处于较清洁状态,在小潮期处于轻污染状态,沉积物质量环境状况良好。  相似文献   

19.
本研究成功构建一种耦合反应器,借助微生物燃料电池(MFC)来强化铁碳微电解还原硝酸盐能力,同时达到提高低浓度硝态氮去除效率和延长铁碳床使用寿命的目的。该耦合反应器运行原理在于利用阳极室内污泥发酵产电特性,为阴极室还原硝酸盐提供电子,强化铁碳床能力,减缓铁腐蚀过程。实验结果表明:在铁碳比为1:1、进水初始pH为7的条件下,该耦合反应器在实验初期对低浓度硝态氮(10 mg·L-1)的去除率为90.33%,而纯铁碳床反应器的硝态氮去除率仅有77.97%,耦合反应器的去除效率高于纯铁碳床12.36%,证明通过耦合MFC能够强化铁碳微电解还原硝态氮的能力。随着铁腐蚀程度的增加,运行20周期后耦合反应器对于硝态氮的去除效率仍高于纯铁碳床28.77%,证明耦合反应器能够延长铁碳床使用时间,并且当铁碳比较低时对硝酸盐去除的强化效果更好。  相似文献   

20.
为了探索生物质材料酒糟对重金属离子的吸附效果,采用静态吸附实验研究废水pH值、Pb2+和Zn2+初始质量浓度以及吸附时间对酒糟吸附模拟矿山酸性废水中Pb2+和Zn2+的影响. pH值为4时酒糟对Pb2+和Zn2+的吸附量分别达到最高值,酒糟对Pb2+的吸附等温线特征符合Langmuir方程,对Zn2+的吸附等温线特征符合Freundlich方程,对Pb2+和Zn2+的最大吸附量分别为8.29 mg·g-1和15.31 mg·g-1.酒糟对Pb2+和Zn2+的吸附反应在4 h后达到平衡,吸附动力学特征均符合拟二级动力学模型.酒糟中纤维素、半纤维素和木质素的质量分数分别为23.3%、65.5%和0.5%,吸附Pb2+和Zn2+后3种物质的含量发生变化,分别为19.6%、42.3%和2.6%.酒糟电负性随pH值升高呈正比增加,吸附Pb2+和Zn2+后电负性减弱.红外光谱分析结果显示酒糟中参与吸附反应的基团主要有酰胺基和酯基.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号