首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of a RanGTP-regulated gradient in mitotic somatic cells   总被引:1,自引:0,他引:1  
Kaláb P  Pralle A  Isacoff EY  Heald R  Weis K 《Nature》2006,440(7084):697-701
The RanGTPase cycle provides directionality to nucleocytoplasmic transport, regulating interactions between cargoes and nuclear transport receptors of the importin-beta family. The Ran-importin-beta system also functions in mitotic spindle assembly and nuclear pore and nuclear envelope formation. The common principle underlying these diverse functions throughout the cell cycle is thought to be anisotropy of the distribution of RanGTP (the RanGTP gradient), driven by the chromatin-associated guanine nucleotide exchange factor RCC1 (refs 1, 4, 5). However, the existence and function of a RanGTP gradient during mitosis in cells is unclear. Here we examine the Ran-importin-beta system in cells by conventional and fluorescence lifetime microscopy using a biosensor, termed Rango, that increases its fluorescence resonance energy transfer signal when released from importin-beta by RanGTP. Rango is predominantly free in mitotic cells, but is further liberated around mitotic chromatin. In vitro experiments and modelling show that this localized increase of free cargoes corresponds to changes in RanGTP concentration sufficient to stabilize microtubules in extracts. In cells, the Ran-importin-beta-cargo gradient kinetically promotes spindle formation but is largely dispensable once the spindle has been established. Consistent with previous reports, we observe that the Ran system also affects spindle pole formation and chromosome congression in vivo. Our results demonstrate that conserved Ran-regulated pathways are involved in multiple, parallel processes required for spindle function, but that their relative contribution differs in chromatin- versus centrosome/kinetochore-driven spindle assembly systems.  相似文献   

2.
Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene   总被引:45,自引:0,他引:45  
I Hagan  M Yanagida 《Nature》1990,347(6293):563-566
The structure equivalent to higher eukaryotic centrosomes in fission yeast, the nuclear membrane-bound spindle pole body, is inactive during interphase. On transition from G2 to M phase of the cell cycle, the spindle pole body duplicates; the daughter pole bodies seed microtubules which interdigitate to form a short spindle that elongates to span the nucleus at metaphase. We have identified two loci which, when mutated, block spindle formation. The predicted product of one of these genes, cut7+, contains an amino-terminal domain similar to the kinesin heavy chain head domain, indicating that the cut7+ product could be a spindle motor. The cut7+ gene resembles the Aspergillus nidulans putative spindle motor gene bimC, both in terms of its organization with a homologous amino-terminal head and no obvious heptad repeats and in the morphology of the mutant phenotype. But we find no similarity between the carboxy termini of these genes, suggested that either the cut7+ gene represents a new class of kinesin genes and that fission yeast may in addition contain a bimC homologue, or that the carboxy termini of these mitotic kinesins are not evolutionarily conserved and that the cut7+ gene belongs to a subgroup of bimC-related kinesins.  相似文献   

3.
Seewald MJ  Körner C  Wittinghofer A  Vetter IR 《Nature》2002,415(6872):662-666
GTPase-activating proteins (GAPs) increase the rate of GTP hydrolysis on guanine nucleotide-binding proteins by many orders of magnitude. Studies with Ras and Rho have elucidated the mechanism of GAP action by showing that their catalytic machinery is both stabilized by GAP binding and complemented by the insertion of a so-called 'arginine finger' into the phosphate-binding pocket. This has been proposed as a universal mechanism for GAP-mediated GTP hydrolysis. Ran is a nuclear Ras-related protein that regulates both transport between the nucleus and cytoplasm during interphase, and formation of the mitotic spindle and/or nuclear envelope in dividing cells. Ran-GTP is hydrolysed by the combined action of Ran-binding proteins (RanBPs) and RanGAP. Here we present the three-dimensional structure of a Ran-RanBP1-RanGAP ternary complex in the ground state and in a transition-state mimic. The structure and biochemical experiments show that RanGAP does not act through an arginine finger, that the basic machinery for fast GTP hydrolysis is provided exclusively by Ran and that correct positioning of the catalytic glutamine is essential for catalysis.  相似文献   

4.
Role of ran GTPase in cell cycle regulation   总被引:1,自引:0,他引:1  
  相似文献   

5.
Y Gachet  S Tournier  J B Millar  J S Hyams 《Nature》2001,412(6844):352-355
The accurate segregation of chromosomes at mitosis depends on a correctly assembled bipolar spindle that exerts balanced forces on each sister chromatid. The integrity of mitotic chromosome segregation is ensured by the spindle assembly checkpoint (SAC) that delays mitosis in response to defective spindle organisation or failure of chromosome attachment. Here we describe a distinct mitotic checkpoint in the fission yeast, Schizosaccharomyces pombe, that monitors the integrity of the actin cytoskeleton and delays sister chromatid separation, spindle elongation and cytokinesis until spindle poles have been properly oriented. This mitotic delay is imposed by a stress-activated mitogen-activated protein (MAP) kinase pathway but is independent of the anaphase-promoting complex (APC).  相似文献   

6.
C E Alfa  B Ducommun  D Beach  J S Hyams 《Nature》1990,347(6294):680-682
Cyclins, as subunits of the protein kinase encoded by the cdc2 gene are major controlling elements of the eukaryotic cell cycle. The fission yeast Schizosaccharomyces pombe has a B-type cyclin, which is a nuclear protein encoded by the cdc13 gene. Here we demonstrate the presence of two spatially distinct cdc13 cyclin populations in the nucleus of S. pombe, one of which is associated with the mitotic spindle poles. Both populations colocalize with the product of the cdc2 gene (p34cdc2). Treatment of cells with the antimicrotubule drug thiabendazole prevents cyclin degradation and blocks the tyrosine dephosphorylation and activation of cdc2. These results suggest a key regulatory role of the cdc2-cyclin complex in the initiation of mitotic spindle formation and also that mitotic microtubule function is required for cdc2 activation.  相似文献   

7.
Visintin R  Hwang ES  Amon A 《Nature》1999,398(6730):818-823
  相似文献   

8.
F Uhlmann  F Lottspeich  K Nasmyth 《Nature》1999,400(6739):37-42
Cohesion between sister chromatids is established during DNA replication and depends on a multiprotein complex called cohesin. Attachment of sister kinetochores to the mitotic spindle during mitosis generates forces that would immediately split sister chromatids were it not opposed by cohesion. Cohesion is essential for the alignment of chromosomes in metaphase but must be abolished for sister separation to start during anaphase. In the budding yeast Saccharomyces cerevisiae, loss of sister-chromatid cohesion depends on a separating protein (separin) called Esp1 and is accompanied by dissociation from the chromosomes of the cohesion subunit Scc1. Here we show that Esp1 causes the dissociation of Scc1 from chromosomes by stimulating its cleavage by proteolysis. A mutant Scc1 is described that is resistant to Esp1-dependent cleavage and which blocks both sister-chromatid separation and the dissociation of Scc1 from chromosomes. The evolutionary conservation of separins indicates that the proteolytic cleavage of cohesion proteins might be a general mechanism for triggering anaphase.  相似文献   

9.
有丝分裂灾难是一种发生在细胞有丝分裂期,由于细胞分裂出现异常而造成的细胞死亡的现象,它通常伴随着细胞周期检查点异常或纺锤体结构的损伤而发生.近年来诱导肿瘤细胞发生有丝分裂灾难成为开发抗肿瘤药物的新分子靶向目标,为对传统化疗药物具有耐药性的肿瘤治疗开辟新的途径.对近年来有关有丝分裂灾难的特征以及药物诱导肿瘤细胞发生有丝分裂灾难机制的研究进展进行全面综述,为发现抗肿瘤新靶点和抗肿瘤新药提供参考依据.  相似文献   

10.
Peng CY  Manning L  Albertson R  Doe CQ 《Nature》2000,408(6812):596-600
Drosophila neuroblasts are a model system for studying asymmetric cell division: they divide unequally to produce an apical neuroblast and a basal ganglion mother cell that differ in size, mitotic activity and developmental potential. During neuroblast mitosis, an apical protein complex orients the mitotic spindle and targets determinants of cell fate to the basal cortex, but the mechanism of each process is unknown. Here we show that the tumour-suppressor genes lethal giant larvae (lgl) and discs large (dlg) regulate basal protein targeting, but not apical complex formation or spindle orientation, in both embryonic and larval neuroblasts. Dlg protein is apically enriched and is required for maintaining cortical localization of Lgl protein. Basal protein targeting requires microfilament and myosin function, yet the lgl phenotype is strongly suppressed by reducing levels of myosin II. We conclude that Dlg and Lgl promote, and myosin II inhibits, actomyosin-dependent basal protein targeting in neuroblasts.  相似文献   

11.
Chromosomes are segregated by two antiparallel arrays of microtubules arranged to form the spindle apparatus. During cell division, the nucleation of cytosolic microtubules is prevented and spindle microtubules nucleate from centrosomes (in mitotic animal cells) or around chromosomes (in plants and some meiotic cells). The molecular mechanism by which chromosomes induce local microtubule nucleation in the absence of centrosomes is unknown, but it can be studied by adding chromatin beads to Xenopus egg extracts. The beads nucleate microtubules that eventually reorganize into a bipolar spindle. RCC1, the guanine-nucleotide-exchange factor for the GTPase protein Ran, is a component of chromatin. Using the chromatin bead assay, we show here that the activity of chromosome-associated RCC1 protein is required for spindle formation. Ran itself, when in the GTP-bound state (Ran-GTP), induces microtubule nucleation and spindle-like structures in M-phase extract. We propose that RCC1 generates a high local concentration of Ran-GTP around chromatin which in turn induces the local nucleation of microtubules.  相似文献   

12.
I Hagan  M Yanagida 《Nature》1992,356(6364):74-76
Several mitotic and meiotic gene products are related to the microtubule motor kinesin, providing insight into the molecular basis of the complex motile events responsible for spindle formation and function. Of these genes, three have been shown to affect spindle structure when mutated. The most severe phenotype is seen in Aspergillus nidulans bimC and Schizosaccharomyces pombe cut7 mutants. In both fungi the intranuclear spindle is bipolar, with microtubules that emanate from spindle pole bodies at either pole, interdigitating in a central overlap zone. In bimC and cut7 mutants, microtubule interdigitation does not appear to take place, instead two unconnected half spindles form and chromosome separation fails. Here we report that cut7 protein concentrates on or near the spindle pole bodies throughout mitotic and meiotic nuclear division and associates with mitotic spindle microtubules in a stage-specific manner, associating with the mid-anaphase B midzone. In cut7ts mutants, spindle pole bodies stain but mitotic microtubules do not.  相似文献   

13.
Clathrin is required for the function of the mitotic spindle   总被引:1,自引:0,他引:1  
Royle SJ  Bright NA  Lagnado L 《Nature》2005,434(7037):1152-1157
Clathrin has an established function in the generation of vesicles that transfer membrane and proteins around the cell. The formation of clathrin-coated vesicles occurs continuously in non-dividing cells, but is shut down during mitosis, when clathrin concentrates at the spindle apparatus. Here, we show that clathrin stabilizes fibres of the mitotic spindle to aid congression of chromosomes. Clathrin bound to the spindle directly by the amino-terminal domain of clathrin heavy chain. Depletion of clathrin heavy chain using RNA interference prolonged mitosis; kinetochore fibres were destabilized, leading to defective congression of chromosomes to the metaphase plate and persistent activation of the spindle checkpoint. Normal mitosis was rescued by clathrin triskelia but not the N-terminal domain of clathrin heavy chain, indicating that stabilization of kinetochore fibres was dependent on the unique structure of clathrin. The importance of clathrin for normal mitosis may be relevant to understanding human cancers that involve gene fusions of clathrin heavy chain.  相似文献   

14.
Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1   总被引:76,自引:0,他引:76  
F R Bischoff  H Ponstingl 《Nature》1991,354(6348):80-82
The product of the gene RCC1 (regulator of chromosome condensation) in a BHK cell line is involved in the control of mitotic events. Homologous genes have been found in Xenopus, Drosophila and yeast. A human genomic DNA fragment and complementary DNA that complement a temperature-sensitive mutation of RCC1 in BHK21 cells encode a protein of relative molecular mass 45,000 (Mr 45K) which is located in the nucleus and binds to chromatin. We have recently isolated a protein from HeLa cells that strongly binds an anti-RCC1 antibody and has the same molecular mass, DNA-binding properties, and amino-acid sequence as the 205 residues already identified. HeLa cell RCC1 is complexed to a protein of Mr 25K. We have shown that this 25K protein has a sequence homologous to the translated reading frame of TC4, a cDNA found by screening a human teratocarcinoma cDNA library with oligonucleotides coding for a ras consensus sequence, and that the protein binds GDP and GTP. We have referred to this protein as the Ran protein (ras-related nuclear protein). In addition to the fraction of Ran protein complexed to RCC1, a 25-fold molar excess of the protein over RCC1 was found in the nucleoplasm of HeLa cells. Here we show that RCC1 specifically catalyses the exchange of guanine nucleotides on the Ran protein but not on the protein c-Ha-ras p21 (p21ras).  相似文献   

15.
Ramadan K  Bruderer R  Spiga FM  Popp O  Baur T  Gotta M  Meyer HH 《Nature》2007,450(7173):1258-1262
During division of metazoan cells, the nucleus disassembles to allow chromosome segregation, and then reforms in each daughter cell. Reformation of the nucleus involves chromatin decondensation and assembly of the double-membrane nuclear envelope around the chromatin; however, regulation of the process is still poorly understood. In vitro, nucleus formation requires p97 (ref. 3), a hexameric ATPase implicated in membrane fusion and ubiquitin-dependent processes. However, the role and relevance of p97 in nucleus formation have remained controversial. Here we show that p97 stimulates nucleus reformation by inactivating the chromatin-associated kinase Aurora B. During mitosis, Aurora B inhibits nucleus reformation by preventing chromosome decondensation and formation of the nuclear envelope membrane. During exit from mitosis, p97 binds to Aurora B after its ubiquitylation and extracts it from chromatin. This leads to inactivation of Aurora B on chromatin, thus allowing chromatin decondensation and nuclear envelope formation. These data reveal an essential pathway that regulates reformation of the nucleus after mitosis and defines ubiquitin-dependent protein extraction as a common mechanism of Cdc48/p97 activity also during nucleus formation.  相似文献   

16.
Mitotic spindle organization by a plus-end-directed microtubule motor.   总被引:41,自引:0,他引:41  
K E Sawin  K LeGuellec  M Philippe  T J Mitchison 《Nature》1992,359(6395):540-543
Intracellular microtubule motor proteins may direct the motile properties and/or morphogenesis of the mitotic spindle (reviewed in ref. 3). The recent identification of kinesin-like proteins important for mitosis or meiosis indicates that kinesin-related proteins may play a universal role in eukaryotic cell division, but the precise function of such proteins in mitosis remains unknown. Here we use an in vitro assay for spindle assembly, derived from Xenopus egg extracts, to investigate the role of Eg5, a kinesin-like protein in Xenopus eggs. Eg5 is localized along spindle microtubules, and particularly enriched near spindle poles. Immunodepletion of Eg5 from egg extracts markedly reduces the extent of spindle formation in extracts, as does direct addition of anti-Eg5 antibodies. We also demonstrate that Eg5 is a plus-end-directed microtubule motor in vitro. Our results suggest a novel mechanism for the dynamic self-organization of spindle poles in mitosis.  相似文献   

17.
J C Labbe  M G Lee  P Nurse  A Picard  M Doree 《Nature》1988,335(6187):251-254
In both starfish and amphibian oocytes, the activity of a major protein kinase which is independent of Ca2+ and cyclic nucleotides increases dramatically at meiotic and mitotic nuclear divisions. The in vivo substrates of this kinase are unknown, but phosphorylation of H1 histone can be used as an in vitro assay. We have purified this kinase from starfish oocytes. The major band in the most highly purified preparation contained a polypeptide of relative molecular mass (Mr) 34,000 (34K). This is the same size as the protein kinase encoded by cdc2+, which regulates entry into mitosis in fission yeast and is a component of MPF purified from Xenopus. Here, we show that antibodies against p34 recognize the starfish 34K protein and propose that entry into meiotic and mitotic nuclear divisions involves activation of the protein kinase encoded by a homologue of cdc2+. Given the wide occurrence of cdc2+ homologues from budding yeast to Xenopus and human cells, this activation may act as a common mechanism controlling entry into mitosis in eukaryotic cells.  相似文献   

18.
Y M Chook  G Blobel 《Nature》1999,399(6733):230-237
Transport factors in the karyopherin-beta (also called importin-beta) family mediate the movement of macromolecules in nuclear-cytoplasmic transport pathways. Karyopherin-beta2 (transportin) binds a cognate import substrate and targets it to the nuclear pore complex. In the nucleus, Ran x GTP binds karyopherin-beta2 and dissociates the substrate. Here we present the 3.0 A structure of the karyopherin-beta2-Ran x GppNHp complex where GppNHp is a non-hydrolysable GTP analogue. Karyopherin-beta2 contains eighteen HEAT repeats arranged into two continuous orthogonal arches. Ran is clamped in the amino-terminal arch and substrate-binding activity is mapped to the carboxy-terminal arch. A large loop in HEAT repeat 7 spans both arches. Interactions of the loop with Ran and the C-terminal arch implicate it in GTPase-mediated dissociation of the import-substrate. Ran x GppNHp in the complex shows extensive structural rearrangement, compared to Ran GDP, in regions contacting karyopherin-beta2. This provides a structural basis for the specificity of the karyopherin-beta family for the GTP-bound state of Ran, as well as a rationale for interactions of the karyopherin-Ran complex with the regulatory proteins ranGAP, ranGEF and ranBP1.  相似文献   

19.
During cell division, sister chromosomes segregate from each other on a microtubule-based structure called the mitotic spindle. Proteins bind to the centromere, a region of chromosomal DNA, to form the kinetochore, which mediates chromosome attachment to the mitotic spindle microtubules. In the budding yeast Saccharomyces cerevisiae, genetic analysis has shown that the 28-basepair (bp) CDEIII region of the 125-bp centromere DNA sequence (CEN sequence) is the main region controlling chromosome segregation in vivo. Therefore it is likely that proteins binding to the CDEIII region link the centromeres to the microtubules during mitosis. A complex of proteins (CBF3) that binds specifically to the CDEIII DNA sequence has been isolated by affinity chromatography. Here we describe kinetochore function in vitro. The CBF3 complex can link DNA to microtubules, and the complex contains a minus-end-directed microtubule-based motor. We suggest that microtubule-based motors form the fundamental link between microtubules and chromosomes at mitosis.  相似文献   

20.
The mitotic checkpoint protein hsMad2 is required to arrest cells in mitosis when chromosomes are unattached to the mitotic spindle. The presence of a single, lagging chromosome is sufficient to activate the checkpoint, producing a delay at the metaphase-anaphase transition until the last spindle attachment is made. Complete loss of the mitotic checkpoint results in embryonic lethality owing to chromosome mis-segregation in various organisms. Whether partial loss of checkpoint control leads to more subtle rates of chromosome instability compatible with cell viability remains unknown. Here we report that deletion of one MAD2 allele results in a defective mitotic checkpoint in both human cancer cells and murine primary embryonic fibroblasts. Checkpoint-defective cells show premature sister-chromatid separation in the presence of spindle inhibitors and an elevated rate of chromosome mis-segregation events in the absence of these agents. Furthermore, Mad2+/- mice develop lung tumours at high rates after long latencies, implicating defects in the mitotic checkpoint in tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号