首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After gene rearrangement, immunoglobulin variable genes are diversified by somatic hypermutation or gene conversion, whereas the constant region is altered by class-switch recombination. All three processes depend on activation-induced cytidine deaminase (AID), a B-cell-specific protein that has been proposed (because of sequence homology) to function by RNA editing. But indications that the three gene diversification processes might be initiated by a common type of DNA lesion, together with the proposal that there is a first phase of hypermutation that targets dC/dG, suggested to us that AID may function directly at dC/dG pairs. Here we show that expression of AID in Escherichia coli gives a mutator phenotype that yields nucleotide transitions at dC/dG in a context-dependent manner. Mutation triggered by AID is enhanced by a deficiency of uracil-DNA glycosylase, which indicates that AID functions by deaminating dC residues in DNA. We propose that diversification of functional immunoglobulin genes is triggered by AID-mediated deamination of dC residues in the immunoglobulin locus with the outcome--that is, hypermutation phases 1 and 2, gene conversion or switch recombination--dependent on the way in which the initiating dU/dG lesion is resolved.  相似文献   

2.
应用大肠杆菌的核苷磷酸化酶合成胸苷   总被引:7,自引:0,他引:7  
通过大肠杆菌核苷磷酸化酶的转脱氧核糖基作用,从胸腺嘧啶和2‘-脱氧核苷合成胸苷。优化了以dU为底物合成胸苷的反应条件。以30mmol/L dU为底物其合成胸苷的转化率可达5.3%;以dA,dC,dU,dG的混合物为底物转化度为52.6%;以DNA降解后的2’-0脱氧核苷混合液作底物,反应液中胸苷浓度从9.2mmol/L提高到17.9mmol/L。  相似文献   

3.
M Hogan  J LeGrange  B Austin 《Nature》1983,304(5928):752-754
We have used triplet anisotropy decay techniques to study the flexibility of synthetic DNA fragments with different base pair compositions. We have found major differences in the torsional and bending stiffness of poly(dG) . poly(dC), poly(dA) . poly(dT) and poly(dA-dC) . poly(dT-dG). Poly(dG) . poly(dC) has a torsional modulus more than 40 times larger than poly(dA-dC) . poly(dT-dG), and approximately 20 times larger than poly(dA) . poly(dT). These differences imply that the torsional stiffness of DNA can vary greatly with base composition. The Young's modulus (bending stiffness) we have measured for poly(dG) . poly(dC) is at least twice that of poly(dA-dC) . poly(dT-dG) or random sequence DNA, and is at least threefold greater than that of poly(dA) . poly(dT). This implies that the bending stiffness of DNA is also strongly dependent on base composition. In light of this dramatic base composition dependence, we suggest here that such stiffness variation may lead to local variations in the stability of chromatin or other protein complexes that require bending or twisting of the DNA helix.  相似文献   

4.
Uracil-DNA glycosylase acts by substrate autocatalysis   总被引:3,自引:0,他引:3  
Dinner AR  Blackburn GM  Karplus M 《Nature》2001,413(6857):752-755
In humans, uracil appears in DNA at the rate of several hundred bases per cell each day as a result of misincorporation of deoxyuridine (dU) or deamination of cytosine. Four enzymes that catalyse the hydrolysis of the glycosylic bond of dU in DNA to yield an apyridiminic site as the first step in base excision repair have been identified in the human genome. The most efficient and well characterized of these uracil-DNA glycosylases is UDG (also known as UNG and present in almost all known organisms), which excises U from single- or double-stranded DNA and is associated with DNA replication forks. We used a hybrid quantum-mechanical/molecular-mechanical (QM/MM) approach to determine the mechanism of catalysis by UDG. In contrast to the concerted associative mechanism proposed initially, we show here that the reaction proceeds in a stepwise dissociative manner. Cleavage of the glycosylic bond yields an intermediate comprising an oxocarbenium cation and a uracilate anion. Subsequent attack by a water molecule and transfer of a proton to D145 result in the products. Surprisingly, the primary contribution to lowering the activation energy comes from the substrate, rather than from the enzyme. This 'autocatalysis' derives from the burial and positioning of four phosphate groups that stabilize the rate-determining transition state. The importance of these phosphates explains the residual activity observed for mutants that lack key residues. A corresponding catalytic mechanism could apply to the DNA glycosylases TDG and SMUG1, which belong to the same structural superfamily as UDG.  相似文献   

5.
H Maki  M Sekiguchi 《Nature》1992,355(6357):273-275
Errors in the replication of DNA are a major source of spontaneous mutations, and a number of cellular functions are involved in correction of these errors to keep the frequency of spontaneous mutations very low. We report here a novel mechanism which prevents replicational errors by degrading a potent mutagenic substrate for DNA synthesis. This error-avoiding process is catalysed by a protein encoded by the mutT gene of Escherichia coli, mutations of which increase the occurrence of A.T----C.G transversions 100 to 10,000 times the level of the wild type. Spontaneous oxidation of dGTP forms 8-oxo-7,8-dihydro-2'-dGTP (8-oxodGTP), which is inserted opposite dA and dC residues of template DNA with almost equal efficiency, and the MutT protein specifically degrades 8-oxodGTP to the monophosphate. This indicates that elimination from the nucleotide pool of the oxidized form of guanine nucleotide is important for the high fidelity of DNA synthesis.  相似文献   

6.
Sale JE  Calandrini DM  Takata M  Takeda S  Neuberger MS 《Nature》2001,412(6850):921-926
After gene rearrangement, immunoglobulin V genes are further diversified by either somatic hypermutation or gene conversion. Hypermutation (in man and mouse) occurs by the fixation of individual, non-templated nucleotide substitutions. Gene conversion (in chicken) is templated by a set of upstream V pseudogenes. Here we show that if the RAD51 paralogues XRCC2, XRCC3 or RAD51B are ablated the pattern of diversification of the immunoglobulin V gene in the chicken DT40 B-cell lymphoma line exhibits a marked shift from one of gene conversion to one of somatic hypermutation. Non-templated, single-nucleotide substitutions are incorporated at high frequency specifically into the V domain, largely at G/C and with a marked hotspot preference. These mutant DT40 cell lines provide a tractable model for the genetic dissection of immunoglobulin hypermutation and the results support the idea that gene conversion and somatic hypermutation constitute distinct pathways for processing a common lesion in the immunoglobulin V gene. The marked induction of somatic hypermutation that is achieved by ablating the RAD51 paralogues is probably a consequence of modifying the recombination-mediated repair of such initiating lesions.  相似文献   

7.
B Hendrich  U Hardeland  H H Ng  J Jiricny  A Bird 《Nature》1999,401(6750):301-304
In addition to its well-documented effects on gene silencing, cytosine methylation is a prominent cause of mutations. In humans, the mutation rate from 5-methylcytosine (m5C) to thymine (T) is 10-50-fold higher than other transitions and the methylated sequence CpG is consequently under-represented. Over one-third of germline point mutations associated with human genetic disease and many somatic mutations leading to cancer involve loss of CpG. The primary cause of mutability appears to be hydrolytic deamination. Cytosine deamination produces mismatched uracil (U), which can be removed by uracil glycosylase, whereas m5C deamination generates a G x T mispair that cannot be processed by this enzyme. Correction of m5CpG x TpG mismatches may instead be initiated by the thymine DNA glycosylase, TDG. Here we show that MBD4, an unrelated mammalian protein that contains a methyl-CpG binding domain, can also efficiently remove thymine or uracil from a mismatches CpG site in vitro. Furthermore, the methyl-CpG binding domain of MBD4 binds preferentially to m5CpG x TpG mismatches-the primary product of deamination at methyl-CpG. The combined specificities of binding and catalysis indicate that this enzyme may function to minimize mutation at methyl-CpG.  相似文献   

8.
Jarosz DF  Godoy VG  Delaney JC  Essigmann JM  Walker GC 《Nature》2006,439(7073):225-228
Translesion synthesis (TLS) by Y-family DNA polymerases is a chief mechanism of DNA damage tolerance. Such TLS can be accurate or error-prone, as it is for bypass of a cyclobutane pyrimidine dimer by DNA polymerase eta (XP-V or Rad30) or bypass of a (6-4) TT photoproduct by DNA polymerase V (UmuD'2C), respectively. Although DinB is the only Y-family DNA polymerase conserved among all domains of life, the biological rationale for this striking conservation has remained enigmatic. Here we report that the Escherichia coli dinB gene is required for resistance to some DNA-damaging agents that form adducts at the N2-position of deoxyguanosine (dG). We show that DinB (DNA polymerase IV) catalyses accurate TLS over one such N2-dG adduct (N2-furfuryl-dG), and that DinB and its mammalian orthologue, DNA polymerase kappa, insert deoxycytidine (dC) opposite N2-furfuryl-dG with 10-15-fold greater catalytic proficiency than opposite undamaged dG. We also show that mutating a single amino acid, the 'steric gate' residue of DinB (Phe13 --> Val) and that of its archaeal homologue Dbh (Phe12 --> Ala), separates the abilities of these enzymes to perform TLS over N2-dG adducts from their abilities to replicate an undamaged template. We propose that DinB and its orthologues are specialized to catalyse relatively accurate TLS over some N2-dG adducts that are ubiquitous in nature, that lesion bypass occurs more efficiently than synthesis on undamaged DNA, and that this specificity may be achieved at least in part through a lesion-induced conformational change.  相似文献   

9.
The enzyme uracil DNA glycosylase (UNG) excises unwanted uracil bases in the genome using an extrahelical base recognition mechanism. Efficient removal of uracil is essential for prevention of C-to-T transition mutations arising from cytosine deamination, cytotoxic U*A pairs arising from incorporation of dUTP in DNA, and for increasing immunoglobulin gene diversity during the acquired immune response. A central event in all of these UNG-mediated processes is the singling out of rare U*A or U*G base pairs in a background of approximately 10(9) T*A or C*G base pairs in the human genome. Here we establish for the human and Escherichia coli enzymes that discrimination of thymine and uracil is initiated by thermally induced opening of T*A and U*A base pairs and not by active participation of the enzyme. Thus, base-pair dynamics has a critical role in the genome-wide search for uracil, and may be involved in initial damage recognition by other DNA repair glycosylases.  相似文献   

10.
Markovitsi D  Talbot F  Gustavsson T  Onidas D  Lazzarotto E  Marguet S 《Nature》2006,441(7094):E7; discussion E8
Absorption of ultraviolet light by DNA is known to lead to carcinogenic mutations, but the processes between photon absorption and the photochemical reactions are poorly understood. In their study of the excited-stated dynamics of model DNA helices using femtosecond transient absorption spectroscopy, Crespo-Hernández et al. observe that the picosecond component of the transient signals recorded for the adenine-thymine oligonucleotide (dA)18.(dT)18 is close to that for (dA)18, but quite different from that for (dAdT)9.(dAdT)9; from this observation, they conclude that excimer formation limits excitation energy to one strand at a time. Here we use time-resolved fluorescence spectroscopy to probe the excited-state dynamics, which reveals the complexity of these systems and indicates that the interpretation of Crespo-Hernández et al. is an oversimplification. We also comment on the pertinence of separating base stacking and base pairing in excited-state dynamics of double helices and question the authors' assignment of the long-lived signal component found for (dA)18.(dT)18 to adenine excimers.  相似文献   

11.
12.
13.
14.
The v-myc oncogene can induce tumours in haematopoietic, mesenchymal and epithelial tissues. The corresponding c-myc proto-oncogene can contribute to the genesis and/or the progression of an equally wide variety of tumours when activated by retroviral insertions, chromosomal translocations or gene amplification. The c-myc gene product is a DNA-binding, nuclear phosphoprotein that is involved in the control of cell proliferation and possibly in DNA synthesis. The replication of Simian virus 40 (SV40) is a useful model system to study eukaryotic DNA replication as the virus relies almost entirely on cellular DNA replication apparatus. The SV40-based vector, pSVEpR4, replicates poorly in the human BJAB lymphoma line and in most human cells, but replicates well in Burkitt lymphoma lines, which have fused immunoglobulin and c-myc genes, resulting in high c-myc expression. Cotransfection of the BJAB cells with a c-myc-expressing construct (pI4-P6) increased the replication of pSVEpR4 tenfold. Our findings indicate that overexpression of the c-myc gene product allows the replication of SV40 in human lymphoma cells, suggesting that c-myc is involved in the control of replication.  相似文献   

15.
Bruner SD  Norman DP  Verdine GL 《Nature》2000,403(6772):859-866
Spontaneous oxidation of guanine residues in DNA generates 8-oxoguanine (oxoG). By mispairing with adenine during replication, oxoG gives rise to a G x C --> T x A transversion, a frequent somatic mutation in human cancers. The dedicated repair pathway for oxoG centres on 8-oxoguanine DNA glycosylase (hOGG1), an enzyme that recognizes oxoG x C base pairs, catalysing expulsion of the oxoG and cleavage of the DNA backbone. Here we report the X-ray structure of the catalytic core of hOGG1 bound to oxoG x C-containing DNA at 2.1 A resolution. The structure reveals the mechanistic basis for the recognition and catalytic excision of DNA damage by hOGG1 and by other members of the enzyme superfamily to which it belongs. The structure also provides a rationale for the biochemical effects of inactivating mutations and polymorphisms in hOGG1. One known mutation, R154H, converts hOGG1 to a promutator by relaxing the specificity of the enzyme for the base opposite oxoG.  相似文献   

16.
Basu U  Chaudhuri J  Alpert C  Dutt S  Ranganath S  Li G  Schrum JP  Manis JP  Alt FW 《Nature》2005,438(7067):508-511
Antibodies, which are produced by B-lineage cells, consist of immunoglobulin heavy (IgH) and light (IgL) chains that have amino-terminal variable regions and carboxy-terminal constant regions. In response to antigens, B cells undergo two types of genomic alterations to increase antibody diversity. Affinity for antigen can be increased by introduction of point mutations into IgH and IgL variable regions by somatic hypermutation. In addition, antibody effector functions can be altered by changing the expressed IgH constant region exons through IgH class switch recombination (CSR). Somatic hypermutation and CSR both require the B-cell-specific activation-induced cytidine deaminase protein (AID), which initiates these reactions through its single-stranded (ss)DNA-specific cytidine deaminase activity. In biochemical assays, replication protein A (RPA), a ssDNA-binding protein, associates with phosphorylated AID from activated B cells and enhances AID activity on transcribed double-stranded (ds)DNA containing somatic hypermutation or CSR target sequences. This AID-RPA association, which requires phosphorylation, may provide a mechanism for allowing AID to access dsDNA targets in activated B cells. Here we show that AID from B cells is phosphorylated on a consensus protein kinase A (PKA) site and that PKA is the physiological AID kinase. Thus, AID from non-lymphoid cells can be functionally phosphorylated by recombinant PKA to allow interaction with RPA and promote deamination of transcribed dsDNA substrates. Moreover, mutation of the major PKA phosphorylation site of AID preserves ssDNA deamination activity, but markedly reduces RPA-dependent dsDNA deamination activity and severely impairs the ability of AID to effect CSR in vivo. We conclude that PKA has a critical role in post-translational regulation of AID activity in B cells.  相似文献   

17.
18.
J S Lebkowski  S Clancy  M P Calos 《Nature》1985,317(6033):169-171
Simian virus 40 (SV40) replicates efficiently in monkey kidney cells. However, we have now found that SV40-based vectors transfected into most human cells replicate poorly, if at all. In contrast, strong SV40 replication is observed in human embryonic kidney (HEK) cells transformed with the adenovirus early region, but not in untransformed HEK cells. Vector replication in adenovirus-transformed cells is dependent on the presence of the SV40 origin of replication and large-T antigen. However, vigorous replication occurs at levels of large-T antigen that are undetectable by immunofluorescence. These data suggest that the adenovirus oncogenes create a replication-permissive environment to which the SV40 replicon responds. Furthermore, replication and gene expression seem to be antagonistic on our vectors. High levels of large-T antigen are observed only when vector replication is blocked by mutations in the gene for large-T antigen or the origin of replication, or by direct inhibition of DNA polymerase with aphidicolin.  相似文献   

19.
R McKay  D DiMaio 《Nature》1981,289(5800):810-813
  相似文献   

20.
Sequence-directed curvature of DNA   总被引:42,自引:0,他引:42  
P J Hagerman 《Nature》1986,321(6068):449-450
DNAs from both prokaryotic and eukaryotic organisms have yielded restriction fragments which manifest markedly anomalous electrophoretic behaviour (reduced mobility) when run on polyacrylamide gels. We have shown previously that the abnormal electrophoretic behaviour of one such fragment is a consequence of stable curvature of the helix axis in solution. The molecules involved tend to contain oligo(dA)-oligo(dT) runs which are approximately in-phase with the helix repeat; however, the precise structural elements responsible for DNA curvature have not been identified. One popular model for curvature invokes a non-coplanar 'wedge-like' conformation of ApA/TpT dinucleotide pairs. Despite a lack of direct evidence in support of this model, it has been used to provide quantitative estimates of curvature. To critically evaluate the ApA wedge model, we have performed an electrophoretic analysis of a series of closely related DNA polymers in which oligo(dA)-oligo(dT) runs of different polarity were compared. We conclude that ApA dinucleotide wedges cannot account for DNA curvature. Therefore, quantitative estimates for ApA wedge deformations, based solely on apparent curvature, cannot be correct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号