首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
讨论了带有非零导子的结合环的交换性,证明了:定理1 R是特征非2的素环,f,g为R的两个非零导子,若有自然数n使得x~nfg(y)-fg(y)x~n∈Z(R) (?)x,y∈R则R可换.定理3 R为无零因子环,d为R的非零导子,若(?)x∈R,d~n_x∈Z(R)且R的特征不是(n+1)1的因子,则R可换.定理5 若素环R的特征不为2,U为R的非零Lie理想,且(?)u∈U有udu+duu∈Z(R),则u~2∈Z(R)且当u~2∈U时,U(?)Z(R).  相似文献   

2.
齐德全 《科技信息》2007,(31):183-183,122
设是素环R,对于环R上的一个可加映射g,如果有R上的导子■使得g(xy)=g(x)y x■(y),x,y∈R,那么就称g为R上的广义导子.本文主要讨论素环上广义导子的线性组合问题,相应地推广了素环上的导子情况.  相似文献   

3.
设 R 是一个中心为 C 并且特征不等于2的素环,d 是 R 的一个导子,N 是 R 的一个非零理想,令 P 为 R 的一个导子,N 是 R 的一个非零理想,令 P 为 R的特征,Z 表示整数环,H=Z 或 C。设 f(x,y)=a_1x~2 a_2y~2 a_3xy a_4yx a_5x a_6y a_7,其中 a_1∈H。本文将证明下列结果:假设 R 至少存在一个非零导子 d_o,H=C(或 Z),那么 f(x,d(x))=0(x∈N)蕴含 d=0的充要条件为 a_1=a_7=0(或 p|a_1,p|a_7),a_2,a_3,a_4,a_5和 a_6不全为零(或 a_2,a_3,a_4,a_5和 a_6不全被 p 整除);并且当 R 是交换环时,如果 a_2=a_5=a_6=0(或 p|a_2,p|a_5,p|a_6),则 a_3 a_4≠0(或 pa_3 a_4)。  相似文献   

4.
素环上的导子   总被引:2,自引:1,他引:1  
设R是中心为Z、 扩张形心为C的素环, 证明了 : (1) 设f(x),g(x)为R上非零导子, 若af(x)+bg(x)亦是R上导子, 且在R上交换, 则f(x)=λx+ζ(x), g(x)=λ′x+ζ′(x), 其中λ,λ′∈C, ζ,ζ′: R→C加性映射; (2) 设R是环, 双加性映射G: R×R→R是R上对称双导子, 若[G(x,x),x]∈Z, char R≠2, 则R是 交换的; (3) 若R是char R≠2的素环, d1,d2是R上非零导子, 且d< sub>1d2(R)∈Z, 则R是交换的.  相似文献   

5.
设 R是一个中心为 C,并且特征不等于 2的素环 ,d是 R的一个导子 ,N是 R的一个非零理想 .令 p为 R的特征 ,Z表示整数环 ,H =C(或 Z) .设 f (x,y) =a1 x2 +a2 y2 +a3xy+a4yx+a5 x+a6 y+a7,其中 ai∈ H (i=1 ,2 ,… ,7) .本文将证明下列结果 :假设 R至少存在一个非零导子 d0 ,那么 f (x,d(x) ) =0 ( x∈ N)蕴含 d=0的充要条件为 a1 =a7=0 (或 p|a1 ,p|a7) ,a2 ,a3,a4,a5 ,a6 不全为零 (或 a2 ,a3,a4,a5 ,a6 不全被 p整除 ) ;并且当 R是交换环时 ,如果 a2 =a5 =a6=0 (或 p|a2 ,p|a5 ,p|a6 ) ,则 a3+a4≠ 0 (或 p|a3+a4)  相似文献   

6.
齐德全  姚红 《科技信息》2007,196(8):32-32
设R是素环,对于环R上的一个可加映射g,如果有R上的导子go使得g(xy)=g(x)y+xgo(y),#x,y∈R,就说g是R上的广义导子.本文主要讨论素环上的广义导子,并相应地推广了素环上的导子情况。  相似文献   

7.
R是2-扭自由素环,I是R上的非零理想,θ是R上的自同构,F是R上的与(θ,θ)-导子d有关的非零广义(θ,θ)-导子,有F(xy)=F(x)F(y)或F(xy)=F(y)F(x),对所有的x,y属于I且d≠0,则R是可交换的.  相似文献   

8.
讨论了素环理想上导子的性质.设R是6-扭自由的素环,I是R的非零理想,Z是环R的中心.若存在非零导子d,满足对任意的x∈I均有[x,d(x2)]∈Z或对任意的x∈I均有x2.d(x)∈Z且Z∩I≠{0},则环R为x交换环.  相似文献   

9.
讨论元素满足两个以上多项式关系之一的半素环的交换性,证明了:定理1 R为半素环,(?)x,y∈R,若x,y满足如下3个关系式之一,则R为交换环:(i)(xy)~m-(xy)~(m_1)(yx)~(m_2)∈Z(R);(ii)(xy)~5-(yx)~1∈Z(R);(iii)(xy)~(k_1)(yx)~(k_2)-(yx)~(k_2)(xy)~(k_1)∈Z(R).其中m,m_i,k_i,s及t与x,y有关且m_1+m_2,t,k_1+k_2为有界自然数.定理2 R为半素环,若R满足下述四个条件之一,则R可换:(1)(?)x,y∈R,x~(2m)y~(2n)-x~my~(2n)x~m∈Z(R)或x~sy~t-y~tx~s∈Z(R);(2)(?)x,y∈R,x~(2m)y~(2n)-y~nx~(2m)y~n∈Z(R)或x~sy~t-y~tx~s∈Z(R);(3)(?)x,y∈R,(yx)~n-yx~ny~(n-1)∈Z(R)或(xy)~n-x~ny~n∈Z(R);(4)(?)x,y∈R,(yx)~n-x~(n-1)y~nx∈Z(R)或(xy)~n-x~ny~n∈Z(R).其中m,n,s,t为自然数,而(1)及(2)中的m,n,s,t与x,y相关,(3)及(4)中n(>1)只与x(或y)有关.  相似文献   

10.
R为2-扭自由素环,J为R的非零Jordan理想,θ,φ是R上的自同构,d是R上的右(θ,φ)-导子,有d(xy)=d(x) d(y)或d(xy)=d(y) d(x),对所有的x,y属于J,则d=0.  相似文献   

11.
素环上导子的线性组合   总被引:1,自引:0,他引:1  
设R是中心为Z,扩张形心为C的素环,证明了:设,(x),g(x),h(x)为R上非零导子,若af(x) bg(x) ch(x)亦是R上导子,且在R上交换,则f(x)=λ1x ζ1(x),g(x)=λ2x ζ2(x),h(x)=λ3x ζ3(x),其中λ1,λ2,λ 3∈C,ζ1,ζ2,ζ3为R一C的加性映射.  相似文献   

12.
讨论了素环理想上导子的性质,推广改进了文献[4],[5]中的结果.证明了下面定理,设R是2-扭自由的素环,I是R的非零理想,Z是环R的中心.若存在非零导子d,满足对任意的x∈I均有[x,d(x2)]∈Z或对任意的x∈I均有x2·d(x)∈Z且Z∩I≠{0}x2,则环R为交换环.  相似文献   

13.
对于任意给定的正整数k≥1,环R上的元x,y的k-Jordan乘积定义为{x,y}_k={{x,y}_(k-1),y}_1,其中{x,y}_0=x,{x,y}_1=xy+yx.假设R是含有单位元与非平凡幂等元的环,f∶R→R是满射。文章证明了在一定的假设条件下,f满足{f(x),f(y)}_k={x,y}_k对所有的x,y∈R成立当且仅当f(x)=λx对所有的x∈R成立,其中λ∈Z(R)(R的中心)且λ~(k+1)=1.作为应用,给出了素环与von Neumann代数上保持此类性质映射的完全刻画。  相似文献   

14.
设R为任意含幺交换环,Mn(R)为R上所有矩阵组成的结合R-代数。对于Mn(R)上线性变换φ,若存在线性变换φ′使得对任意x,y∈Mn(R)均有φ′xy=φxy+xφy,则称φ为Mn(R)上的拟导子。本文定出了当n≥3时Mn(R)上任一拟导子的具体形式,对导子的概念进行了推广。  相似文献   

15.
给出了定理:设R为半质环,若对(A)x,y∈R都有(xy)3 +x3y3∈Z(R),则R为交换环.并且给出了其若干证明方法.  相似文献   

16.
该文证明了:R是一个素环,I是R的一个非零的右理想。若D是R的一个导子满足xD^n(x)-D^n(x)x∈Z,对每个x∈I,n是某一个正整数。那么或者D(Z)=0,或者R是交换的,其中Z是R的中心。  相似文献   

17.
设N是2-挠自由分配生成素近环,它具有单位元1和中心Z.该文证明了如果N满足下列条件之一,则N是交换整区(1)N容纳2个非零导子D1,D2,使得D1D2(N) Z;(2)N容纳一个非零导子D,使得[D(N),D2(N)]={0};(3)N容纳一个导子D,使得D(Z)≠{0},且() x,y∈N,有[x-D(x),D(y)]=0.  相似文献   

18.
设R是特征不为2的素环,U是平方封闭的非中心李理想,δ是伴随为d的广义导子,如果有δ(U)Z(R)或[δ(x),δ(y)]=[x,y]并满足d(Z(U))≠0,那么存在q∈Qr(Rc)使得对所有的x∈R,有δ(x)=qx。此外,如果对于所有x∈U,[a,δ(x)]∈Z(R)并满足d(Z(U))≠0,那么a∈Z(R).  相似文献   

19.
设R是素环,I是R的非零理想,d是I上非零广义导子,若d([x,y])=0,对任意x,y∈I,那么R是交换的;若d([x,y])=[x,y],对任意x,y∈I,那么d是I上的恒等映射;若d在I上是同态(反同态),则d是I上的恒等映射(R是交换的).  相似文献   

20.
利用重合度理论,研究一类具有偏差变元的二阶微分方程x″+f(t,x′(t))+g(t,x(t-τ(t)))=p(t)的周期解的存在性问题.其中,f,g∈C(R×R,R),且对任意的x∈R,g(t+ω,x)=g(t,x),p∈C(R,R),τ∈C(R,R)是ω-周期的.在不要求对所有的y∈R,函数f(t,y)≤0(f(t,y)≥0),t∈R的情况下,得到该类方程至少存在一个ω-周期解的充分条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号