共查询到18条相似文献,搜索用时 62 毫秒
1.
为解决传统 K-means 算法中因初始聚类中心选择不当而导致聚类结果陷入局部极值的问题, 采用蝙蝠算法搜寻 K-means 算法的初始聚类中心, 并将模拟退火的思想和基于排挤的小生境技术引入到蝙蝠算法中, 以克服原始蝙蝠算法存在后期收敛速度慢、 搜索力不强等问题。 同时, 通过测试函数验证了其有效性。 最后利用改进后的蝙蝠算法优化 K-means 算法的初始聚类中心, 并将该改进的算法与传统的 K-means 算法的聚类结果进行了对比。 实验结果表明, 改进后的算法的聚类性能比传统的 K-means 算法有很大提高。 相似文献
2.
一种改进的K一均值聚类算法 总被引:2,自引:0,他引:2
为了改进K-means聚类算法的不足,把混合粒子群优化算法引入到K-means聚类算法中,重新选取编码方式并构造适应度函数,在此基础上提出了一种改进的K-means聚类算法;通过两个经典数据集的测试,实验结果表明:改进的算法比K-means算法具有更好的全局寻优能力、更快的收敛速度,且其解的精度更高对初始聚类中心的敏感度降低. 相似文献
3.
K均值聚类算法初始质心选择的改进 总被引:3,自引:0,他引:3
聚类分析在信息检索和数据挖掘等领域都有很广泛的应用,K均值聚类算法是一个比较简洁和快速的聚类算法,但是它存在着初始聚类个数必须事先设定以及初始质心的选择也具有随机性等缺陷,造成聚类的结果不是最优的。针对K均值聚类算法中的随机指定初始质心的缺点,提出了基于密度和最近邻相似度的初始质心选择算法,实验显示该算法可以生成质量较高而且较稳定的聚类结果,但是改进的算法需要事先设定最近邻相似度的阈值计算量较大等缺点,还有待改进。 相似文献
4.
一种新的密度加权粗糙K-均值聚类算法 总被引:1,自引:0,他引:1
为了克服粗糙K-均值聚类算法初始聚类中心点随机选取,以及样本密度函数定义所存在的缺陷,基于数据对象所在区域的样本点密集程度,定义了新的样本密度函数,选择相互距离最远的K个高密度样本点作为初始聚类中心,克服了现有粗糙K-均值聚类算法的初始中心随机选取的缺点,从而使得聚类结果更接近于全局最优解。同时在类均值计算中,对每个样本根据定义的密度赋以不同的权重,得到不受噪音点影响的更合理的质心。利用UCI机器学习数据库的6组数据集,以及随机生成的带有噪音点的人工模拟数据集进行测试,证明本文算法具有更好的聚类效果,而且对噪音数据有很强的抗干扰性能。 相似文献
5.
基于改进GA的K-均值聚类算法 总被引:3,自引:0,他引:3
利用遗传算法或免疫规划算法解决初始聚类中心是较好的方法,但容易出现局部早熟现象.为了克服以上缺点,借助免疫机制的优点,将免疫原理的选择操作机制引入遗传算法中,提出基于改进遗传的K-均值聚类算法,该方法结合K-均值算法的高效性和改进遗传算法的全局优化能力,较好地解决了聚类中心优化问题.试验结果表明,本算法能够有效改善聚类质量. 相似文献
6.
基于K-均值聚类算法的中药叶片显微图像分割 总被引:1,自引:0,他引:1
本文试图利用图像分割技术,实现叶片自动分类。为了充分利用像素的色彩,分割算法在RGB颜色空间进行。颜色空间数据量巨大,直接进行聚类效率太低,因此,本文运用一种特殊的存储结构存储颜色空间数据,按颜色的密度特征对图像中的颜色进行排序和聚类,并根据待聚类色彩与已有聚类中心距离是否小于类内最大距离来决定归入已有的类或形成一个新的类。实验结果表明算法具有较好的分类效果。 相似文献
7.
针对传统K均值聚类算法对初始聚类中心敏感,易陷入局部最优和对大数据集聚类速度慢的缺点,将ARIA与Kmeans算法相结合,提出了一种ARIA-Kmeans算法,即基于自适应半径免疫的K均值聚类算法。首先利用自适应半径免疫算法对数据进行预处理,产生能够代表原始数据分布以及密度信息的内部镜像数据;然后用K均值聚类算法对其进行多次聚类,获得最佳聚类中心,并将其作为初始聚类中心,推广到全部数据优化聚类效果;最后对其结果进行评价。实验结果表明,相对于传统Kmeans算法,新算法在保证聚类准确度的前提下,提高了算法运行的时间效率和稳定性。 相似文献
8.
人工免疫C-均值聚类算法 总被引:13,自引:0,他引:13
通过借鉴生物免疫系统中的克隆选择原理和记忆机制,提出了一种人工免疫C-均值混合聚类算法.该算法采用了新的克隆选择方法,通过亲和度排序和个体浓度定义了个体的选择概率,从而可确定个体的适应值评价函数,以评价和选择个体.算法还集成了一种C-均值搜索算子,用于加快收敛速度.在聚类数目已知的情况下,所提算法能够得到给定数据集下的全局最优划分,与基于遗传算法的聚类方法比较,它具有更快的收敛速度和更高的收敛精度,并可扩展到性能指标能够表示为优化聚类中心函数的聚类模型之中.仿真结果表明,所提算法是有效性的. 相似文献
9.
传统图像分割方法大都存在分割速度低下、过度分割等缺点.针对上述问题,提出一种新的彩色图像区域分割算法.这种方法首先将图像转化至L*a*b*空间,并划分为子块,抽取图像子块的颜色、纹理和位置特征组成子块的特征向量,然后运用减法聚类,获得聚类簇数和初始蔟中心,最后利用改进的K均值算法在像素点特征空间进行聚类,进而分割图像成区域.实验结果表明这种新方法具有分割效率高、分割效果理想等优点. 相似文献
10.
基于SOFM网络的改进K-均值聚类算法 总被引:1,自引:0,他引:1
针对传统的K-均值聚类算法中随机选取初始聚类中心的缺陷,提出一种改进的K-均值聚类算法,利用自组织特征映射网络(SOFM)自动获得初始聚类中心.实验结果表明,改进的K-均值聚类算法能有效改善聚类性能,提高聚类的准确率. 相似文献
11.
基于混合遗传算法的K-Means最优聚类算法 总被引:6,自引:0,他引:6
针对遗传算法的K-Means聚类算法在遗传过程中容易受到适应度最大染色体的影响,存在过早收敛于局部最优值和遗传算法的局部搜索性能较差的问题,提出了结合混沌优化方法形成的混合遗传算法。仿真实验表明:该方法有效地克服了遗传算法的早熟问题,从而得到最优的聚类中心。 相似文献
12.
随着网络技术和相关学科的发展,入侵检测技术日趋成熟.对SOM算法和K-Means算法进行了具体的分析,提出了一种基于SOM和K-Means的使两类算法优点相结合并克服各自不足的聚类算法,提高了聚类信息的精确度、对攻击的识别率和系统的整体性能. 相似文献
13.
K-means算法是聚类方法中常用的一种划分方法.基于扩展划分的思想,提出了一种基于扩展的K-means聚类算法(EK-means),在一定程度上避免了聚类结果陷入局部解的现象,减少了原始K-means算法因采用误差平方和准则函数而出现将大的聚类簇分割开的情况.该算法使用了基于距离的技术来处理孤立点,引进了一种基于扩展的方法进行聚类.实验表明该算法可扩展性好,能够很好的识别出孤立点或噪声,并且有很好的精度. 相似文献
14.
K-Means聚类算法在面对海量数据时,时间和空间的复杂性已成为K-Means聚类算法的瓶颈.在充分研究传统K-Means聚类算法的基础上,提出了基于集群环境的并行K-Means聚类算法的设计思想,给出了其加速比估算公式,并通过实验证明了该算法的正确性和有效性. 相似文献
15.
针对基于粗糙熵的图像分割算法不能满足复杂图像的多类目标提取的需要,本文先利用K-均值聚类算法对图像进行区域分割,再利用基于粗糙熵的方法对分割结果进行目标提取,从而达到多阈值分割的目的。通过对遥感图像进行分割处理,证明了改进后算法的有效性。 相似文献
16.
针对传统K均值算法中采取的欧氏距离计算相似性的不足,提出一种新的相似性计算方法,并将这种方法与欧氏距离的度量方法进行了比较。在UC I基准数据集上的实验表明,该方法有更稳定的聚类结果,是一种比较有效的聚类度量方法。 相似文献
17.
余冬梅 《科技导报(北京)》2012,30(11):76-79
空间聚类和空间索引的结合是当前空间数据库中提高数据检索效率的技术之一。本文从空间聚类和空间索引的存储原理入手,阐述了K-Means聚类算法及其改进算法的技术思路,研究了K-Means算法在空间数据库中与空间索引方法结合的技术问题;分析了当前基于K-Means算法的R-树系列空间索引技术的研究成果,阐述了它们提高空间检索效率的技术路线及实验结果,研究显示这些技术都能在一定程度上提高数据检索的效率。最后给出了聚类与空间索引结合技术未来的研究方向。 相似文献