首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Banach空间中关于一致Lipschitzian映象的一个新结果   总被引:1,自引:0,他引:1  
设E是一实Banach空间,K为E中的一非空闭凸子集,Ti:K→K,i=1,2,3为一致Lipschitzian连续映象.如果序列kn(∩)[1,∞),kn→1,{αn}、{βn}、{δn}∈[0,1],满足:(i)δn→1(n→∞);(ii)∑∞n=0αn=∞,∑∞n=0βn=∞;(iii)∑∞n=0α2n<∞,∑∞n=0αnβn<∞;(iv)∑∞n=0αn(kn-1)<∞,对x0∈K,让{xn}满足以下迭代序列xn+1=(1-αn)xn+αnT n1ynyn=(1-βn)xn+βnT n2znzn=(1-δn)xn+δnT n3xn,如果存在严格增的函数φ:[0,∞)→[0,∞),φ(0)=0,使得对(A)j(x+y)∈J(x+y),x∈K(i=1,2,3)有〈T nix-x*,j(x-x*)〉≤kn||x-x*||-(ψ)(||x-x*||),则{xn}收敛于x*.文章主要结果推广了张石生教授最近文献[1,8]以及文献[6-7]等的主要结果.  相似文献   

2.
设K是任意实Banach空间X中的闭凸子集,T ∶ K→K是Lipschitz严格伪压缩映象,在没有假设∑∞n=0αnβn<∞之下,本文证明了由xn+1=(1-αn) xn+αnTyn+un与yn=(1-βn) xn+βnTxn+vn,n∈N,生成的带误差的Ishikawa迭代序列强收敛到T的唯一不动点,并给出了更为一般的收敛率估计:若un=vn=0,n∈N,则有‖xn+1-x*‖≤(1-γn) ‖xn-x*‖≤…≤∏nj=0(1-γj) ‖x0-x*‖,其中{γn}是(0,1)中的序列,满足γn≥11+kmin(ε,η-ε) αn.所得结果改进和推广了最新的一些结果.  相似文献   

3.
K是实Banach空间E中的非空闭凸子集,T1,T2,…,TN:K→K是N个一致Li-Lipshitz渐近伪压缩映象,{xn}是K中如下定义的迭代序列:{xn+1=(1-αn)xn+αnTikyn yn=(1-βn)xn+βnTixn n≥0其中,n=(k-1)N+i,i∈I={1,2,…,N}.在适当的条件下证明了以上迭代序列强收敛于T1,T2,…,TN的公共不动点.  相似文献   

4.
设K是Hilbert空间E中非空闭凸集,Ti:K→K是具不动点集F(Ti)的严格伪压缩映像,且F=∩1≤i≤NF(Ti)≠φ,i=1,2,3,…,N.对x0∈K与{αn}(∈)[0,1],隐迭代格式{xn}定义为xn=αnxn-1+(1-αn)Tnxn,n≥1.这里Tn=TnmodN,如果{xn}收敛于Ti的公共不动点p∈F,i=1,2,3,...,N,且xn≠p,则对任意y∈F,有lim supn→+∞(y-p,xn-p/‖xn-p‖)≤0.称这一几何结果为逼近不动点的钝角原理.  相似文献   

5.
在一实的Banach空间中,引入一修订的有限簇拟压缩映像T1,T2,…,Tm,并证明了在一定条件下,关于{xn}的迭代:xn+1=(1-α1n)xn+α1nT1y1n+u1n,y1n=(1-α2n)xn+α2nT2y2n+u2n…,y(m-1)n=(1-αmn)xn+αmnTmxn+umn,(m≥2)强收敛与有限个似压缩簇T1,T2,…,Tm的公共不动点。本文的结果改进和推广了一些文献的最新结果。  相似文献   

6.
设E是实Banach空间,C是E的非空闭凸子集,T:C→C是一致L-Lipschitz的中间意义下的渐近k-严格伪压缩映象且∑∞n=1γn<∞,任取一点x0∈E,{xn}是根据xn+1=(1-αn-βn)xn+αnTnxn+βnun定义的具误差的修改的Mann迭代序列,若F(T)非空有界,在对参数的一些适当限制条件下,得到了{xn}强收敛于T的一个不动点的充要条件是lim infn→∞D (xn,F(T))=0;去掉F(T)有界的条件后对参数进行同样的限制,得到了根据xn+1=(1-αn)xn+αnTnxn定义的修改的Mann迭代序列{xn}强收敛于T的一个不动点的充要条件是lim infn→∞D (xn,F(T))=0。  相似文献   

7.
Banach空间上广义渐近拟非扩张型映象不动点的逼近   总被引:7,自引:4,他引:3  
引入一类比渐近拟非扩张型映象更加广泛的广义渐近拟非扩张型映象,并给出具混合误差的Ishikawa迭代序列强收敛于广义渐近拟非扩张型映象的一个不动点的充要条件:设E是一Banach空间,T:E→E是广义渐近拟非扩张型映象,其渐近系数kn满足∑(kn-1)<∞;若T在F(T)中的点处一致连续,任取一点x0∈E,{xn}是由下式定义的具混合误差的Ishikawa迭代序列{xn 1=(1-αn)xn αnTnyn un, ,yn=(1-βn)xn βnTnxn vn,n≥0其中{αn}、{βn}是[0,1]中的两个数列且∞∑n=0αn收敛,{un}、{vn}是E中两个点列且{vn}有界同时∞En=0‖un‖收敛.则{xn}强收敛于T在E中一个不动点的充要条件是lim inf D(xn,F(T))=0.  相似文献   

8.
Banach空间中关于增生算子方程解带误差的Ishikawa迭代序列   总被引:1,自引:1,他引:0  
设X是任意实Banach空间,T:X→X是Lipschitz连续的增生算子,在没有假设∞∑n=0αnβn<∞之下,证明了由xn 1=(1-αn)xn αn(f-Tyn) un及yn=(1-βn)xn βn(f-Txn) vn,(A)n≥0生成的、带误差的Ishikawa迭代序列强收敛到方程x Tx=f的唯一解,并给出了更为一般的收敛率估计:若un=vn=0,(A)n≥0,则有‖xn 1-x*‖≤(1-γn)‖xn-x*‖≤…≤n∏j=0(1-γj)‖x0-x*‖,其中{yn}是(0,1)中的序列,满足γn≥[1/2max{η,1-η}-1/4min{η,1-η}]αn,(A)n≥0.  相似文献   

9.
有限簇非扩张非自映象的黏性逼近   总被引:2,自引:1,他引:1  
设E是一自反的Banach空间,具有E到E·的弱序列连续的正规对偶映象,K是E的非空闭凸子集而且是E的sunny非扩张收缩核.设f:K→K是一压缩映象,T1,T2,...,TN:K→E是一有限簇非扩张非自映象且∩Ni=1Fix(Ti)≠Ф.序列{xn}定义为xn+1=P(αnf(xn)+(1-αn)Tnyn),yn=P(βnxn+(1-βn)Tnxn), (A)n≥1,其中{αn},{βn}(∪)[0,1],P:E→K是一sunny非扩张保核收缩,Tn=Tn(modN).用黏性逼近方法证明了迭代序列{xn}强收敛于T1,T2,...,TN的公共不动点的充分必要条件,也推广和改进了一些文献的最新结果.  相似文献   

10.
文中讨论了下面修正Mann’s迭代格式{xn},x0∈K,xn 1=(1-αn)yn αnf(xn)yn=(1-βn)Txn βnxnn≥0的迭代序列的收敛性问题,在适当的假设条件之下在Banach空间中证明了迭代序列{xn}强收敛到非扩张映射的某个不动点x,且x是某个变分不等式在不动点集F(T)上的唯一解.结果改进和推广了Xu Hong-kun[1]、Kim Tae-hwa和Xu Hong-kun[2]等的相应结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号