首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asphaug E  Agnor CB  Williams Q 《Nature》2006,439(7073):155-160
Terrestrial planet formation is believed to have concluded in our Solar System with about 10 million to 100 million years of giant impacts, where hundreds of Moon- to Mars-sized planetary embryos acquired random velocities through gravitational encounters and resonances with one another and with Jupiter. This led to planet-crossing orbits and collisions that produced the four terrestrial planets, the Moon and asteroids. But here we show that colliding planets do not simply merge, as is commonly assumed. In many cases, the smaller planet escapes from the collision highly deformed, spun up, depressurized from equilibrium, stripped of its outer layers, and sometimes pulled apart into a chain of diverse objects. Remnants of these 'hit-and-run' collisions are predicted to be common among remnant planet-forming populations, and thus to be relevant to asteroid formation and meteorite petrogenesis.  相似文献   

2.
A low mass for Mars from Jupiter's early gas-driven migration   总被引:1,自引:0,他引:1  
Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ~100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.  相似文献   

3.
In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M(o)) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a 5.5(+5.5)(-2.7) M(o) planetary companion at a separation of 2.6+1.5-0.6 au from a 0.22+0.21-0.11 M(o) M-dwarf star, where M(o) refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.  相似文献   

4.
Ford EB  Lystad V  Rasio FA 《Nature》2005,434(7035):873-876
Doppler spectroscopy has detected 152 planets around nearby stars. A major puzzle is why many of their orbits are highly eccentric; all planets in our Solar System are on nearly circular orbits, as is expected if they formed by accretion processes in a protostellar disk. Several mechanisms have been proposed to generate large eccentricities after planet formation, but so far there has been little observational evidence to support any particular model. Here we report that the current orbital configuration of the three giant planets around upsilon Andromedae (upsilon And) probably results from a close dynamical interaction with another planet, now lost from the system. The planets started on nearly circular orbits, but chaotic evolution caused the outer planet (upsilon And d) to be perturbed suddenly into a higher-eccentricity orbit. The coupled evolution of the system then causes slow periodic variations in the eccentricity of the middle planet (upsilon And c). Indeed, we show that upsilon And c periodically returns to a very nearly circular state every 6,700 years.  相似文献   

5.
Kenyon SJ  Bromley BC 《Nature》2004,432(7017):598-602
The Kuiper belt extends from the orbit of Neptune at 30 au to an abrupt outer edge about 50 au from the Sun. Beyond the edge is a sparse population of objects with large orbital eccentricities. Neptune shapes the dynamics of most Kuiper belt objects, but the recently discovered planet 2003 VB12 (Sedna) has an eccentric orbit with a perihelion distance of 70 au, far beyond Neptune's gravitational influence. Although influences from passing stars could have created the Kuiper belt's outer edge and could have scattered objects into large, eccentric orbits, no model currently explains the properties of Sedna. Here we show that a passing star probably scattered Sedna from the Kuiper belt into its observed orbit. The likelihood that a planet at 60-80 au can be scattered into Sedna's orbit is about 50 per cent; this estimate depends critically on the geometry of the fly-by. Even more interesting is the approximately 10 per cent chance that Sedna was captured from the outer disk of the passing star. Most captures have very high inclination orbits; detection of such objects would confirm the presence of extrasolar planets in our own Solar System.  相似文献   

6.
When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47?days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation.  相似文献   

7.
Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.  相似文献   

8.
Two Earth-sized planets orbiting Kepler-20   总被引:1,自引:0,他引:1  
Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.  相似文献   

9.
Israelian G  Santos NC  Mayor M  Rebolo R 《Nature》2001,411(6834):163-166
Current models of the evolution of the known extrasolar planetary systems need to incorporate orbital migration and/or gravitational interactions among giant planets to explain the presence of large bodies close to their parent stars. These processes could also lead to planets being ingested by their parent stars, which would alter the relative abundances of elements heavier than helium in the stellar atmospheres. In particular, the abundance of the rare 6Li isotope, which is normally destroyed in the early evolution of solar-type stars but preserved intact in the atmospheres of giant planets, would be boosted substantially. 6Li has not hitherto been observed reliably in a metal-rich star, where metallicity refers to the total abundance of elements heavier than helium. Here we report the discovery of 6Li in the atmosphere of the metal-rich solar-type star HD82943, which is known to have an orbiting giant planet. The presence of 6Li can probably be interpreted as evidence for a planet (or planets) having been engulfed by the parent star.  相似文献   

10.
Brittain SD  Rettig TW 《Nature》2002,418(6893):57-59
Massive planets have now been found orbiting about 80 stars. A long outstanding question critical to theories of planet formation has been the timescale on which gas-giant planets form; in particular, stars more massive than the Sun may blow away the surrounding gas associated with their formation more quickly than it can be accumulated by the protoplanetary cores. Evidence for a protoplanet around a Herbig AeBe star (such stars are 2 3 times more massive than the Sun) would constrain the timescale of planet formation. Here we report the detection of CO and H(3)(+) emission from the 5-10-million-year-old Herbig AeBe star HD141569. We interpret the CO data as indicating that the inner disk surrounding the star is past the early phase of accretion and planetesimal formation, and that most of the gas has been cleared out to a distance of more than 17 astronomical units. CO effectively destroys H(3)(+) (ref. 2), so their presence in the same source is surprising. Moreover, H(3)(+) line emission has previously been detected only from the atmospheres of the giant planets in the Solar System. The H(3)(+) and CO may therefore be distributed in the disk at different circumstellar distances, or, alternatively, H(3)(+) may be located in the extended envelope of a protoplanet.  相似文献   

11.
After the initial discoveries fifteen years ago, over 200 extrasolar planets have now been detected. Most of them orbit main-sequence stars similar to our Sun, although a few planets orbiting red giant stars have been recently found. When the hydrogen in their cores runs out, main-sequence stars undergo an expansion into red-giant stars. This expansion can modify the orbits of planets and can easily reach and engulf the inner planets. The same will happen to the planets of our Solar System in about five billion years and the fate of the Earth is matter of debate. Here we report the discovery of a planetary-mass body (Msini = 3.2M(Jupiter)) orbiting the star V 391 Pegasi at a distance of about 1.7 astronomical units (au), with a period of 3.2 years. This star is on the extreme horizontal branch of the Hertzsprung-Russell diagram, burning helium in its core and pulsating. The maximum radius of the red-giant precursor of V 391 Pegasi may have reached 0.7 au, while the orbital distance of the planet during the stellar main-sequence phase is estimated to be about 1 au. This detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-giant expansion of their parent stars.  相似文献   

12.
Eisner JA 《Nature》2007,447(7144):562-564
Planetary systems (ours included) formed in disks of dust and gas around young stars. Disks are an integral part of the star and planet formation process, and knowledge of the distribution and temperature of inner-disk material is crucial for understanding terrestrial planet formation, giant planet migration, and accretion onto the central star. Although the inner regions of protoplanetary disks in nearby star-forming regions subtend only a few nano-radians, near-infrared interferometry has recently enabled the spatial resolution of these terrestrial zones. Most observations have probed only dust, which typically dominates the near-infrared emission. Here I report spectrally dispersed near-infrared interferometric observations that probe the gas (which dominates the mass and dynamics of the inner disk), in addition to the dust, within one astronomical unit (1 au, the Sun-Earth distance) of the young star MWC 480. I resolve gas, including water vapour and atomic hydrogen, interior to the edge of the dust disk; this contrasts with results of previous spectrally dispersed interferometry observations. Interactions of this accreting gas with migrating planets may lead to short-period exoplanets like those detected around main-sequence stars. The observed water vapour is probably produced by the sublimation of migrating icy bodies, and provides a potential reservoir of water for terrestrial planets.  相似文献   

13.
Konacki M 《Nature》2005,436(7048):230-233
Hot Jupiters are gas-giant planets orbiting with periods of 3-9 days around Sun-like stars. They are believed to form in a disk of gas and condensed matter at or beyond approximately 2.7 astronomical units (au-the Sun-Earth distance) from their parent star. At such distances, there exists a sufficient amount of solid material to produce a core capable of capturing enough gas to form a giant planet. Subsequently, they migrate inward to their present close orbits. Here I report the detection of an unusual hot Jupiter orbiting the primary star of a triple stellar system, HD 188753. The planet has an orbital period of 3.35 days and a minimum mass of 1.14 times that of Jupiter. The primary star's mass is 1.06 times that of the Sun, 1.06 M(\circ). The secondary star, itself a binary stellar system, orbits the primary at an average distance of 12.3 au with an eccentricity of 0.50. The mass of the secondary pair is 1.63 M(\circ). Such a close and massive secondary would have truncated a disk around the primary to a radius of only approximately 1.3 AU (ref. 4) and might have heated it up to temperatures high enough to prohibit giant-planet formation, leaving the origin of this planet unclear.  相似文献   

14.
There is a general consensus that planets form within disks of dust and gas around newly born stars. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8+/-3.3)M(Jupiter) around TW Hydrae (TW Hya), a nearby young star with an age of only 8-10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation.  相似文献   

15.
Canup RM  Ward WR 《Nature》2006,441(7095):834-839
The Solar System's outer planets that contain hydrogen gas all host systems of multiple moons, which notably each contain a similar fraction of their respective planet's mass (approximately 10(-4)). This mass fraction is two to three orders of magnitude smaller than that of the largest satellites of the solid planets (such as the Earth's Moon), and its common value for gas planets has been puzzling. Here we model satellite growth and loss as a forming giant planet accumulates gas and rock-ice solids from solar orbit. We find that the mass fraction of its satellite system is regulated to approximately 10(-4) by a balance of two competing processes: the supply of inflowing material to the satellites, and satellite loss through orbital decay driven by the gas. We show that the overall properties of the satellite systems of Jupiter, Saturn and Uranus arise naturally, and suggest that similar processes could limit the largest moons of extrasolar Jupiter-mass planets to Moon-to-Mars size.  相似文献   

16.
55 Cancri系是已发现的太阳系外众多行星系中的一个,其中心天体类似太阳,周围有4颗巨行星.最内部的行星e是2004年新发现的,质量与海王星类似,但到中心天体的距离却仅为水星到太阳的1/10.这类行星在外太阳系具有典型性.为了探索该类行星的轨道稳定性问题,本文对行星e进行了106年的轨道演化数值模拟.结果表明:除了与相邻行星的2:11共振点外,行星e半长径在小于0.0388AU范围内的轨道都是稳定的.该结果意味着,在类太阳恒星的周围,类海王星质量的行星可以稳定在近距离的轨道上.  相似文献   

17.
Deming D  Seager S  Richardson LJ  Harrington J 《Nature》2005,434(7034):740-743
A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.  相似文献   

18.
Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289?days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131?days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.  相似文献   

19.
Brogi M  Snellen IA  de Kok RJ  Albrecht S  Birkby J  de Mooij EJ 《Nature》2012,486(7404):502-504
The giant planet orbiting τ Bo?tis (named τ Bo?tis b) was amongst the first extrasolar planets to be discovered. It is one of the brightest exoplanets and one of the nearest to us, with an orbital period of just a few days. Over the course of more than a decade, measurements of its orbital inclination have been announced and refuted, and have hitherto remained elusive. Here we report the detection of carbon monoxide absorption in the thermal dayside spectrum of τ Bo?tis b. At a spectral resolution of ~100,000, we trace the change in the radial velocity of the planet over a large range in phase, determining an orbital inclination of 44.5°?±?1.5° and a mass 5.95?±?0.28 times that of Jupiter, demonstrating that atmospheric characterization is possible for non-transiting planets. The strong absorption signal points to an atmosphere with a temperature that is decreasing towards higher altitudes, in contrast to the temperature inversion inferred for other highly irradiated planets. This supports the hypothesis that the absorbing compounds believed to cause such atmospheric inversions are destroyed in τ Bo?tis b by the ultraviolet emission from the active host star.  相似文献   

20.
Gomes R  Levison HF  Tsiganis K  Morbidelli A 《Nature》2005,435(7041):466-469
The petrology record on the Moon suggests that a cataclysmic spike in the cratering rate occurred approximately 700 million years after the planets formed; this event is known as the Late Heavy Bombardment (LHB). Planetary formation theories cannot naturally account for an intense period of planetesimal bombardment so late in Solar System history. Several models have been proposed to explain a late impact spike, but none of them has been set within a self-consistent framework of Solar System evolution. Here we propose that the LHB was triggered by the rapid migration of the giant planets, which occurred after a long quiescent period. During this burst of migration, the planetesimal disk outside the orbits of the planets was destabilized, causing a sudden massive delivery of planetesimals to the inner Solar System. The asteroid belt was also strongly perturbed, with these objects supplying a significant fraction of the LHB impactors in accordance with recent geochemical evidence. Our model not only naturally explains the LHB, but also reproduces the observational constraints of the outer Solar System.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号