首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
以三氯化铁和醋酸钠为原料,采用水热法制备Fe_3O_4粉体,对比实心Fe_3O_4粉体在吸波性能上具备的优势。通过X射线衍射(XRD)分析Fe_3O_4粉体的物相结构;采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)观测Fe_3O_4粉体的尺寸及形貌;使用矢量网络分析仪测试了同轴样品的电磁参数来计算泡状Fe_3O_4粉体的微波吸波性能。结果表明,制备的Fe_3O_4粉体为泡状结构,密度小于实心Fe_3O_4粉体,且介电常数实部明显升高。在0.5~18.0GHz频段,当厚度大于4mm时,其吸波性能相比实心Fe_3O_4粉体有一定优势。  相似文献   

2.
采用化学沉淀法制备纳米Fe3O4颗粒,并以聚乙二醇为改性剂,蒸馏水为载液,制备出固体质量分数为10%的纳米Fe3O4磁流体.用XRD研究Fe3O4纳米粒子的结晶情况;用FT-IR研究聚乙二醇改性前后Fe3O4粒子表面官能团的变化;用TEM研究Fe3O4颗粒的粒径大小及改性情况;用VSM研究Fe3O4粒子的磁性能.结果表明,制备的纳米Fe3O4为立方晶型,平均粒径在15 nm左右,聚乙二醇物理吸附在Fe3O4表面,Fe3O4颗粒几乎没有磁滞,具有超顺磁性.  相似文献   

3.
水热法制备纳米Fe3O4的研究   总被引:7,自引:0,他引:7  
本实验以尿素、铁盐、亚铁盐等为原料,采用水热法制备了纳米Fe3O4.通过一次回归正交设计研究和讨论了表面活性剂SDS用量、反应温度、反应时间、尿素用量对产物粒径的影响,并通过快速登高法寻优得到了最优工艺条件:表面活性剂SDS用量0.4g、反应温度118℃、反应时间2.1h,尿素用量10g.在最优条件下制备的产物经XRD、TEM和激光粒度分析仪检测得知,产物大部分为球形Fe3O4。平均粒径27nm.  相似文献   

4.
本文考察了Fe3O4/纳米级Fe0对污染水中Cr(VI)的去除效果,以及Fe3O4投加量、腐殖酸投加量、温度对Fe3O4/纳米级Fe0去除水中Cr(VI)的影响。结果表明:Fe3O4/纳米级Fe0对水中Cr(VI)的去除效果很好,在2min时Cr(VI)的去除率就能够达到91.4%,这个值比纳米级Fe0单独作用120min时对 Cr(VI)的去除率还要高;Fe3O4与纳米级Fe0的配比为7.5:1时,Fe3O4/纳米级Fe0对Cr(VI)的去除效果最好。温度的升高加速了Fe3O4/纳米级Fe0对水中Cr(VI)还原降解反应的进行。  相似文献   

5.
Fe3O4@SiO2磁性纳米粒子的制备及表征   总被引:2,自引:0,他引:2  
用多元醇还原法制备出平均粒径为6.0 nm的Fe3O4磁性纳米粒子,并用盐酸溶液(1 mol/L)对其进行酸化处理,然后利用反相微乳液法,在Op-10/正丁醇/环己烷/浓氨水反相微乳体系中制备出Fe3O4@SiO2磁性纳米复合粒子.利用X射线衍射(XRD)仪,透射电子显微镜(TEM),傅立叶-红外光谱仪(FT-IR)和...  相似文献   

6.
纳米Fe3O4/BaTiO3复合体系的微波吸收特性   总被引:7,自引:4,他引:7  
研究了纳米Fe3O4和BaTiO4及其复合体系在2~18GHz频率范围内的微波吸收性能,并分析了其吸收机制以及复合组分对吸波性能的影响。研究结果表明,通过调节材料组分可调节电磁参数及吸收峰的位置,复合体系的有效吸收频带较单一材料的吸附频带变宽。单一组分的纳米Fe3O4和PaTiO3都有2个吸收峰。在复合体系中,多个吸收峰发生重叠。这2种材料的微波吸收能力随电磁波频率的变化而规律不同,当频率低于14GHz时,PaTiO3的吸收能力大于Fe3O4的吸收能力;当频率高于14GHz时,Fe3O4的吸收能力大于BaTiO3的吸收能力。因此,将这2种材料复合,产生协同效应,材料的整体吸收能办提高,有效吸收频带拓宽。当样品的厚度为2mm,Fe3O4与BaTiO3的质量比为3:2时,反射率为10dB的有效频宽可达2.7GHz;当Fe3O4与BaTiO3的质量比为2:3时,反射率为10dB的有效频宽可达4GHz。  相似文献   

7.
以葡萄糖为碳源,以聚乙烯吡咯烷酮( PVP)为表面活性剂,在碱性条件下用水合肼还原氯化铁,采用两步水热法制备Fe3 O4/C磁性纳米粒子,并采用X-射线衍射仪( XRD)、扫描电子显微镜( SEM)、透射电子显微镜( TEM)对产物进行表征。结果表明:产物为碳包覆纳米四氧化三铁核壳结构,其直径为300~600 nm,晶化程度较高。  相似文献   

8.
9.
磁性Fe3O4纳米微粒的水热合成及表征   总被引:8,自引:0,他引:8  
以FeC l2.4H2O和FeC l3.6H2O为原料,采用水热法合成了Fe3O4磁性纳米微粒.考察了不同氧化还原剂,螯合剂和表面活性剂等因素对产物形貌和尺寸的影响,运用透射电镜(TEM)、红外光谱(FTIR)和X-射线衍射(XRD)对其微结构进行了表征,还用振动样品磁强计(VSM)对样品的基本磁性能进行了表征.  相似文献   

10.
超顺磁性Fe3O4纳米粒子的制备和表征   总被引:1,自引:0,他引:1  
超顺磁性的Fe3O4纳米颗粒,因其具有许多独特的性质和潜在的应用前景,引起了人们的极大关注,是材料研究领域的一个持续热点.采用共沉淀法制得纳米Fe3O4,通过XRD、SEM等对样品进行表征,用VSM对样品进行磁性能测试.结果表明所得样品为纯反尖晶石结构的Fe3O4球形颗粒,平均粒径约为15nm.磁性能测试表明当外加磁场...  相似文献   

11.
平炉炼钢产生大量平炉尘,内蒙古包头钢铁公司的平炉尘主要成分是立方晶系的γ-Fe2O3.利用同晶型间的拓扑转化原理,将平炉尘转化为超细尖晶石型铁氧体磁性粉末.加入表面活性剂可以降低超微粒子的表面能,减少其团聚倾向.实验证明,在平炉尘中加入15%的SDBS(十二烷基苯磺酸钠)后再反应,可以得到粒径更细且均匀的超细Fe3O4粉末.  相似文献   

12.
用溶胶-凝胶法(Sol-Gel)结合超临界干燥技术(SCFD)制备Fe2O3/Al2O3二元超细复合材料,并用XRD,TEM进行检测。研究结果表明,采用该法,可制得红色、分散性好、粒径小于1μm的Fe2O3/Al2O3二元超细复合材料。  相似文献   

13.
聚丙烯酸/Fe3O4纳米复合材料的制备及性能研究   总被引:6,自引:0,他引:6  
将聚丙烯酸(PAA)溶液与纳米Fe3O4粒子共混制得PAA/Fe3O4磁性纳米复合材料。用透射电镜(TEM)、红外光谱(FTIR)、热重分析仪(TGA)、动态超显微硬度仪(DUHMT)和磁性能测量系统(MPMS)对材料进行了表征。结果表明,复合材料中Fe3O4粒子的平均粒径约为10 nm且能较好分散;PAA可通过羧基中的氧原子与Fe3O4中的Fe原子以配位键方式相结合,进而形成一定的交联网络结构;复合材料的热稳定性由于这种特殊相互作用的存在而提高;随着Fe3O4含量的增加,复合材料的压痕深度降低,弹性和硬度增加;复合材料在300 K时表现出超顺磁性。  相似文献   

14.
磁性Fe3O4明胶复合纳米粒子的制备与表征   总被引:2,自引:0,他引:2  
用化学共沉淀法制备磁性Fe3O4纳米粒子,然后用异丙醇为凝聚剂采用单凝聚法制备磁性Fe3O4明胶复合纳米粒子。考察了明胶浓度与异丙醇的体积以及Fe3O4含量对粒径分布及性能的关系。采用透射电子显微镜和Zetasizer粒度分析仪测量磁性明胶复合纳米粒子的平均粒径,X射线衍射仪和红外光谱以及热重及差热分析进行结构和热稳定分析。结果表明磁性Fe3O4明胶复合纳米粒子中的Fe3O4纳米粒子被明胶所包覆,而且粒径很小,具有良好的热稳定性。  相似文献   

15.
均匀沉淀法合成纳米氧化铁   总被引:14,自引:0,他引:14  
以尿素为均匀沉淀剂、氯化铁为原料,采用均匀沉淀法在不同的条件下合成具有实用价值的α型纳米氧化铁.用XRD和TEM测定产品的形貌并确定产品的纳米尺度.实验表明,所合成的Fe2O3为α型,粒径在20~40nm范围,且分散性好.初步探讨了煅烧温度等合成条件对晶体粒径和形貌的影响以及均匀沉淀法合成纳米氧化铁的机理.  相似文献   

16.
影响水热合成纳米Fe3O4晶粒纯度和平均粒径的因素   总被引:4,自引:0,他引:4  
系统研究了溶液起始pH值、处理时间和温度等因素对水热合成纳米Fe3O4晶粒纯度和平均粒径的影响。结果表明,在实验所采用的溶液浓度下,溶液起始pHll、处理时间为4h、处理温度为150℃是得到纯度高且平均粒径较小的纳米Fe3O4的适宜条件。延长处理时间或升高处理温度,也都能得到纯度高的纳米Fe3O4,但平均粒径较大。  相似文献   

17.
包头钢铁厂的平炉尘含铁量高,较径微细,以γ—Fe2O3为主.经过提纯分级可作为生产超细磁性材料的原料.在有Fe^2 存在及避免氧化的条件下,将平炉尘转化为超细晶石型铁酸盐Fe3O4,对不同碱性条件下的反应进行了比较研究.  相似文献   

18.
纳米Fe3O4/PANI复合体系的微波电磁特性研究   总被引:5,自引:0,他引:5  
用原位化学反应生成法制备了纳米Fe3O4/PANI复合材料,研究了样品在2~18 GHz范围的微波电磁特性与吸收性能以及复合材料组分对电导率、密度的影响.结果表明,Fe3O4颗粒尺寸约12.7 nm,Fe3O4在复合体系中的质量分数为35%左右时,电导率最大,密度相对较低,微波吸收率最高,吸收峰值为-21 dB,-10 dB频宽大于4 GHz,样品同时具有电损耗和磁损耗.可见,通过优化设计,纳米Fe3O4/PANI复合体系可以成为一种性能优良的微波吸收材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号