首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Koide S  Huang X  Link K  Koide A  Bu Z  Engelman DM 《Nature》2000,403(6768):456-460
The hydrophobic effect is the main thermodynamic driving force in the folding of water-soluble proteins. Exclusion of nonpolar moieties from aqueous solvent results in the formation of a hydrophobic core in a protein, which has been generally considered essential for specifying and stabilizing the folded structures of proteins. Outer surface protein A (OspA) from Borrelia burgdorferi contains a three-stranded beta-sheet segment which connects two globular domains. Although this single-layer beta-sheet segment is exposed to solvent on both faces and thus does not contain a hydrophobic core, the segment has a high conformational stability. Here we report the engineering of OspA variants that contain larger single-layer beta-sheets (comprising five and seven beta-strands) by duplicating a beta-hairpin unit within the beta-sheet. Nuclear magnetic resonance and small-angle X-ray scattering analyses reveal that these extended single-layer beta-sheets are formed as designed, and amide hydrogen-deuterium exchange and chemical denaturation show that they are stable. Thus, interactions within the beta-hairpin unit and those between adjacent units, which do not involve the formation of a hydrophobic core, are sufficient to specify and stabilize the single-layer beta-sheet structure. Our results provide an expanded view of protein folding, misfolding and design.  相似文献   

2.
J B Udgaonkar  R L Baldwin 《Nature》1988,335(6192):694-699
The presence of an early intermediate on the folding pathway of ribonuclease A has been demonstrated by a study of the exchange reaction between the backbone amide protons in the folding protein and solvent protons using rapid mixing techniques. A structural analysis of the intermediate by two-dimensional 1H-NMR is consistent with the framework model of protein folding in which stable secondary structure first forms the framework necessary for the subsequent formation of the complete tertiary structure.  相似文献   

3.
Russ WP  Lowery DM  Mishra P  Yaffe MB  Ranganathan R 《Nature》2005,437(7058):579-583
Protein sequences evolve through random mutagenesis with selection for optimal fitness. Cooperative folding into a stable tertiary structure is one aspect of fitness, but evolutionary selection ultimately operates on function, not on structure. In the accompanying paper, we proposed a model for the evolutionary constraint on a small protein interaction module (the WW domain) through application of the SCA, a statistical analysis of multiple sequence alignments. Construction of artificial protein sequences directed only by the SCA showed that the information extracted by this analysis is sufficient to engineer the WW fold at atomic resolution. Here, we demonstrate that these artificial WW sequences function like their natural counterparts, showing class-specific recognition of proline-containing target peptides. Consistent with SCA predictions, a distributed network of residues mediates functional specificity in WW domains. The ability to recapitulate natural-like function in designed sequences shows that a relatively small quantity of sequence information is sufficient to specify the global energetics of amino acid interactions.  相似文献   

4.
Sadqi M  Fushman D  Muñoz V 《Nature》2006,442(7100):317-321
Protein folding is an inherently complex process involving coordination of the intricate networks of weak interactions that stabilize native three-dimensional structures. In the conventional paradigm, simple protein structures are assumed to fold in an all-or-none process that is inaccessible to experiment. Existing experimental methods therefore probe folding mechanisms indirectly. A widely used approach interprets changes in protein stability and/or folding kinetics, induced by engineered mutations, in terms of the structure of the native protein. In addition to limitations in connecting energetics with structure, mutational methods have significant experimental uncertainties and are unable to map complex networks of interactions. In contrast, analytical theory predicts small barriers to folding and the possibility of downhill folding. These theoretical predictions have been confirmed experimentally in recent years, including the observation of global downhill folding. However, a key remaining question is whether downhill folding can indeed lead to the high-resolution analysis of protein folding processes. Here we show, with the use of nuclear magnetic resonance (NMR), that the downhill protein BBL from Escherichia coli unfolds atom by atom starting from a defined three-dimensional structure. Thermal unfolding data on 158 backbone and side-chain protons out of a total of 204 provide a detailed view of the structural events during folding. This view confirms the statistical nature of folding, and exposes the interplay between hydrogen bonding, hydrophobic forces, backbone conformation and side-chain entropy. From the data we also obtain a map of the interaction network in this protein, which reveals the source of folding cooperativity. Our approach can be extended to other proteins with marginal barriers (less than 3RT), providing a new tool for the study of protein folding.  相似文献   

5.
Classical studies show that for many proteins, the information required for specifying the tertiary structure is contained in the amino acid sequence. Here, we attempt to define the sequence rules for specifying a protein fold by computationally creating artificial protein sequences using only statistical information encoded in a multiple sequence alignment and no tertiary structure information. Experimental testing of libraries of artificial WW domain sequences shows that a simple statistical energy function capturing coevolution between amino acid residues is necessary and sufficient to specify sequences that fold into native structures. The artificial proteins show thermodynamic stabilities similar to natural WW domains, and structure determination of one artificial protein shows excellent agreement with the WW fold at atomic resolution. The relative simplicity of the information used for creating sequences suggests a marked reduction to the potential complexity of the protein-folding problem.  相似文献   

6.
Using two structurally related benzoates bearing different H-bond acceptors as co-ligands, three new azido-Cu^Ⅱ compounds, [Cu(L^1)(N3)(H2O)]n(1), [Cu(L^1)(N3)(MeOH)]n (2), and [CuL^2HL^2(N3)3(H2O)]n(3) (HL^1 = 4-nitrobenzoic acid; HL^2= 2-phenyl-4-quinolinecarboxylic acid), have been synthesized and structurally characterized. 1 is a carboxylate/EO-azido bridged copper chain, forming 3D structure by H-bonds, and 2 has a similar chain structure as 1 but forming a 2D structure by H-bonds, while 3 is a 3D supramolecular network with ternary center H-bonds. Magnetic study indicates that domain ferromagnetic coupling interactions were found to exist in complexes 1 and 3.  相似文献   

7.
Friml J  Wiśniewska J  Benková E  Mendgen K  Palme K 《Nature》2002,415(6873):806-809
Long-standing models propose that plant growth responses to light or gravity are mediated by asymmetric distribution of the phytohormone auxin. Physiological studies implicated a specific transport system that relocates auxin laterally, thereby effecting differential growth; however, neither the molecular components of this system nor the cellular mechanism of auxin redistribution on light or gravity perception have been identified. Here, we show that auxin accumulates asymmetrically during differential growth in an efflux-dependent manner. Mutations in the Arabidopsis gene PIN3, a regulator of auxin efflux, alter differential growth. PIN3 is expressed in gravity-sensing tissues, with PIN3 protein accumulating predominantly at the lateral cell surface. PIN3 localizes to the plasma membrane and to vesicles that cycle in an actin-dependent manner. In the root columella, PIN3 is positioned symmetrically at the plasma membrane but rapidly relocalizes laterally on gravity stimulation. Our data indicate that PIN3 is a component of the lateral auxin transport system regulating tropic growth. In addition, actin-dependent relocalization of PIN3 in response to gravity provides a mechanism for redirecting auxin flux to trigger asymmetric growth.  相似文献   

8.
van Beek JD  Beaulieu L  Schäfer H  Demura M  Asakura T  Meier BH 《Nature》2000,405(6790):1077-1079
Silks are fibrous proteins that form heterogeneous, semi-crystalline solids. Silk proteins have a variety of physical properties reflecting their range of functions. Spider dragline silk, for example, has high tensile strength and elasticity, whereas other silks are better suited to making housing, egg sacs or the capture spiral of spiders' webs. The differing physical properties arise from variation in the protein's primary and secondary structure, and their packing in the solid phase. The high mechanical performance of spider dragline silk, for example, is probably due to a beta-sheet conformation of poly-alanine domains, embedded as small crystallites within the fibre. Only limited structural information can be obtained from diffraction of silks, so further characterization requires spectroscopic studies such as NMR. However, the classical approach to NMR structure determination fails because the high molecular weight, repetitive primary structure and structural heterogeneity of solid silk means that signals from individual amino-acid residues cannot be resolved. Here we adapt a recently developed solid-state NMR technique to determine torsion angle pairs (phi, psi) in the protein backbone, and we study the distribution of conformations in silk from the Eri silkworm, Samia cynthia ricini. Although the most probable conformation in native fibres is an anti-parallel beta-sheet, film produced from liquid directly extracted from the silk glands appears to be primarily alpha-helical.  相似文献   

9.
IntroductionRecent studies of the protein folding pathway andintermediate states in vitro and in vivo haveinduced much interest in the importance ofunderstanding the propertiesof partially structuredintermediates[1 7] . Studies have suggested thatintermed…  相似文献   

10.
van den Akker F  Zhang X  Miyagi M  Huo X  Misono KS  Yee VC 《Nature》2000,406(6791):101-104
The atrial natriuretic peptide (ANP) hormone is secreted by the heart in response to an increase in blood pressure. ANP exhibits several potent anti-hypertensive actions in the kidney, adrenal gland and vascular system. These actions are induced by hormone binding extracellularly to the ANP receptor, thereby activating its intracellular guanylyl cyclase domain for the production of cyclic GMP. Here we present the crystal structure of the glycosylated dimerized hormone-binding domain of the ANP receptor at 2.0-A resolution. The monomer comprises two interconnected subdomains, each encompassing a central beta-sheet flanked by alpha-helices, and exhibits the type I periplasmic binding protein fold. Dimerization is mediated by the juxtaposition of four parallel helices, arranged two by two, which brings the two protruding carboxy termini into close relative proximity. From affinity labelling and mutagenesis studies, the ANP-binding site maps to the side of the dimer crevice and extends to near the dimer interface. A conserved chloride-binding site is located in the membrane distal domain, and we found that hormone binding is chloride dependent. These studies suggest mechanisms for hormone activation and the allostery of the ANP receptor.  相似文献   

11.
Liou YC  Tocilj A  Davies PL  Jia Z 《Nature》2000,406(6793):322-324
Insect antifreeze proteins (AFP) are much more effective than fish AFPs at depressing solution freezing points by ice-growth inhibition. AFP from the beetle Tenebrio molitor is a small protein (8.4 kDa) composed of tandem 12-residue repeats (TCTxSxxCxxAx). Here we report its 1.4-A resolution crystal structure, showing that this repetitive sequence translates into an exceptionally regular beta-helix. Not only are the 12-amino-acid loops almost identical in the backbone, but also the conserved side chains are positioned in essentially identical orientations, making this AFP perhaps the most regular protein structure yet observed. The protein has almost no hydrophobic core but is stabilized by numerous disulphide and hydrogen bonds. On the conserved side of the protein, threonine-cysteine-threonine motifs are arrayed to form a flat beta-sheet, the putative ice-binding surface. The threonine side chains have exactly the same rotameric conformation and the spacing between OH groups is a near-perfect match to the ice lattice. Together with tightly bound co-planar external water, three ranks of oxygen atoms form a two-dimensional array, mimicking an ice section.  相似文献   

12.
J P Derrick  D B Wigley 《Nature》1992,359(6397):752-754
Protein G is a cell-surface protein from Streptococcus which binds to IgG molecules from a wide range of species with an affinity comparable to that of antigen. The high affinity of protein G for the Fab portion of IgG poses a particular challenge in molecular recognition, given the variability of heavy chain subclass, light chain type and complementarity-determining regions. Here we report the crystal structure of a complex between a protein G domain and an immunoglobulin Fab fragment. An outer beta-strand in the protein G domain forms an antiparallel interaction with the last beta-strand in the constant heavy chain domain of the immunoglobulin, thus extending the beta-sheet into the protein G. The interaction between secondary structural elements in Fab and protein G provides an ingenious solution to the problem of maintaining a high affinity for many different IgG molecules. The structure also contrasts with Fab-antigen complexes, in which all contacts with antigen are mediated by the variable regions of the antibody, and to our knowledge provides the first details of interaction of the constant regions of Fab with another protein.  相似文献   

13.
以4种连有不同取代基的阳离子表面活性剂为铝硅酸盐矿物捕收剂,研究各药剂对铝硅矿物的浮选能力及浮选特点。运用密度泛函理论(DFT)B3lyp/6-31G(d)方法,对4种捕收剂的阳离子结构进行优化,并计算原子电荷分布等量化参数和几何结构参数。研究结果表明:甲基的取代可增强阳离子的静电作用能力,同时,削弱它与矿物表面之间的氢键作用;苄基的取代不仅增强药剂的静电效应,而且增加氢键的结合能力;理论分析结果与浮选试验结果一致,季铵盐的浮选能力较伯胺与叔胺的强,连有苄基的季铵盐对铝硅酸盐矿物的捕收能力最强,且受pH值影响小。  相似文献   

14.
Contribution of hydrophobic interactions to protein stability   总被引:34,自引:0,他引:34  
J T Kellis  K Nyberg  D Sali  A R Fersht 《Nature》1988,333(6175):784-786
A major factor in the folding of proteins is the burying of hydrophobic side chains. A specific example is the packing of alpha-helices on beta-sheets by interdigitation of nonpolar side chains. The contributions of these interactions to the energetics of protein stability may be measured by simple protein engineering experiments. We have used site-directed mutagenesis to truncate hydrophobic side chains at an alpha-helix/beta-sheet interface in the small ribonuclease from Bacillus amyloliquefaciens (barnase). The decreases in stability of the mutant proteins were measured by their susceptibility to urea denaturation. Creation of a cavity the size of a -CH2-group destabilizes the enzyme by 1.1 kcal mol-1, and a cavity the size of three such groups by 4.0 kcal mol-1.  相似文献   

15.
The molecular mechanism of helix nucleation in peptides and proteins is not yet understood and the question of whether sharp turns in the polypeptide backbone serve as nuclei for protein folding has evoked controversy. A recent study of the conformation of a tetrapeptide containing the stereochemically constrained residue alpha-aminoisobutyric acid, both in solution and the solid state, yielded a structure consisting of two consecutive beta-turns, leading to an incipient 3(10) helical conformation. :This led us to speculate that specific tri- and tetrapeptide sequences may indeed provide a helical twist to the amino-terminal segment of helical regions in proteins and provide a nucleation site for further propagation. The transformation from a 3(10) helical structure to an alpha-helix should be facile and requires only small changes in the phi and psi conformational angles and a rearrangement of the hydrogen bonding pattern. If such a mechanism is involved then it should be possible to isolate an incipient 3(10) helical conformation in a tripeptide amide or tetrapeptide sequence, based purely on the driving force derived from short-range interactions. We have synthesised and studied the model peptide pivaloyl-Pro-Pro-Ala-NHMe (compound I) and provide here spectroscopic evidence for a 3(10) helical conformation in compound I.  相似文献   

16.
在微波辐射条件下高效合成了3种含1,1’-联萘骨架的对称酰胺型开链冠醚,产物结构经IR,1 H-NMR进行了表征.结果表明,该方法具有反应步骤短,时间短,产率高等优点,是合成含1,1’-联萘骨架的对称酰胺型开链冠醚的有效方法之一.  相似文献   

17.
Yamasaki M  Li W  Johnson DJ  Huntington JA 《Nature》2008,455(7217):1255-1258
Repeating intermolecular protein association by means of beta-sheet expansion is the mechanism underlying a multitude of diseases including Alzheimer's, Huntington's and Parkinson's and the prion encephalopathies. A family of proteins, known as the serpins, also forms large stable multimers by ordered beta-sheet linkages leading to intracellular accretion and disease. These 'serpinopathies' include early-onset dementia caused by mutations in neuroserpin, liver cirrhosis and emphysema caused by mutations in alpha(1)-antitrypsin (alpha(1)AT), and thrombosis caused by mutations in antithrombin. Serpin structure and function are quite well understood, and the family has therefore become a model system for understanding the beta-sheet expansion disorders collectively known as the conformational diseases. To develop strategies to prevent and reverse these disorders, it is necessary to determine the structural basis of the intermolecular linkage and of the pathogenic monomeric state. Here we report the crystallographic structure of a stable serpin dimer which reveals a domain swap of more than 50 residues, including two long antiparallel beta-strands inserting in the centre of the principal beta-sheet of the neighbouring monomer. This structure explains the extreme stability of serpin polymers, the molecular basis of their rapid propagation, and provides critical new insights into the structural changes which initiate irreversible beta-sheet expansion.  相似文献   

18.
Sugase K  Dyson HJ  Wright PE 《Nature》2007,447(7147):1021-1025
  相似文献   

19.
针对作用在聚合物刷上的键拉力研究表明作用在接枝基面上的力随着聚合物刷接枝密度的增大反而减小,然而尾端单体上的拉伸张力并没有消失.高分子的构象和动力学转变决定了其物性和多种多样的应用,而生物大分子蛋白质作为由二十种不同属性的氨基酸构成的序列,更是具有由其序列所决定的特别的三维自然结构.本文就聚合物刷、聚合物纳米复合材料、聚合物网络等几种高分子体系的构象与动力学过程,及蛋白质构象和其折叠与去折叠的动力学过程做了介绍.特别是蛋白质的折叠与去折叠速率在单分子操纵实验中受到拉力的调控,通过测量这种拉力依赖的动力学过程、蛋白质的自由能曲面和折叠去折叠路径可以得到系统全面的研究.本文以肌肉蛋白titin的免疫球蛋白结构域I27为例对蛋白质折叠研究进行了阐述.  相似文献   

20.
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex   总被引:39,自引:0,他引:39  
SCF complexes are the largest family of E3 ubiquitin-protein ligases and mediate the ubiquitination of diverse regulatory and signalling proteins. Here we present the crystal structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF complex, which shows that Cul1 is an elongated protein that consists of a long stalk and a globular domain. The globular domain binds the RING finger protein Rbx1 through an intermolecular beta-sheet, forming a two-subunit catalytic core that recruits the ubiquitin-conjugating enzyme. The long stalk, which consists of three repeats of a novel five-helix motif, binds the Skp1-F boxSkp2 protein substrate-recognition complex at its tip. Cul1 serves as a rigid scaffold that organizes the Skp1-F boxSkp2 and Rbx1 subunits, holding them over 100 A apart. The structure suggests that Cul1 may contribute to catalysis through the positioning of the substrate and the ubiquitin-conjugating enzyme, and this model is supported by Cul1 mutations designed to eliminate the rigidity of the scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号