共查询到20条相似文献,搜索用时 0 毫秒
1.
James Chong 《Journal of forecasting》2004,23(8):603-620
This paper compares daily exchange rate value at risk estimates derived from econometric models with those implied by the prices of traded options. Univariate and multivariate GARCH models are employed in parallel with the simple historical and exponentially weighted moving average methods. Overall, we find that during periods of stability, the implied model tends to overestimate value at risk, hence over‐allocating capital. However, during turbulent periods, it is less responsive than the GARCH‐type models, resulting in an under‐allocation of capital and a greater number of failures. Hence our main conclusion, which has important implications for risk management, is that market expectations of future volatility and correlation, as determined from the prices of traded options, may not be optimal tools for determining value at risk. Therefore, alternative models for estimating volatility should be sought. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
This paper addresses the issue of freight rate risk measurement via value at risk (VaR) and forecast combination methodologies while focusing on detailed performance evaluation. We contribute to the literature in three ways: First, we reevaluate the performance of popular VaR estimation methods on freight rates amid the adverse economic consequences of the recent financial and sovereign debt crisis. Second, we provide a detailed and extensive backtesting and evaluation methodology. Last, we propose a forecast combination approach for estimating VaR. Our findings suggest that our combination methods produce more accurate estimates for all the sectors under scrutiny, while in some cases they may be viewed as conservative since they tend to overestimate nominal VaR. 相似文献
3.
This paper investigates inference and volatility forecasting using a Markov switching heteroscedastic model with a fat‐tailed error distribution to analyze asymmetric effects on both the conditional mean and conditional volatility of financial time series. The motivation for extending the Markov switching GARCH model, previously developed to capture mean asymmetry, is that the switching variable, assumed to be a first‐order Markov process, is unobserved. The proposed model extends this work to incorporate Markov switching in the mean and variance simultaneously. Parameter estimation and inference are performed in a Bayesian framework via a Markov chain Monte Carlo scheme. We compare competing models using Bayesian forecasting in a comparative value‐at‐risk study. The proposed methods are illustrated using both simulations and eight international stock market return series. The results generally favor the proposed double Markov switching GARCH model with an exogenous variable. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
4.
This paper proposes value‐at risk (VaR) estimation methods that are a synthesis of conditional autoregressive value at risk (CAViaR) time series models and implied volatility. The appeal of this proposal is that it merges information from the historical time series and the different information supplied by the market's expectation of risk. Forecast‐combining methods, with weights estimated using quantile regression, are considered. We also investigate plugging implied volatility into the CAViaR models—a procedure that has not been considered in the VaR area so far. Results for daily index returns indicate that the newly proposed methods are comparable or superior to individual methods, such as the standard CAViaR models and quantiles constructed from implied volatility and the empirical distribution of standardised residuals. We find that the implied volatility has more explanatory power as the focus moves further out into the left tail of the conditional distribution of S&P 500 daily returns. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
Denisa Banulescu Gilbert Colletaz Christophe Hurlin Sessi Tokpavi 《Journal of forecasting》2016,35(3):224-249
This article proposes intraday high‐frequency risk (HFR) measures for market risk in the case of irregularly spaced high‐frequency data. In this context, we distinguish three concepts of value‐at‐risk (VaR): the total VaR, the marginal (or per‐time‐unit) VaR and the instantaneous VaR. Since the market risk is obviously related to the duration between two consecutive trades, these measures are completed with a duration risk measure, i.e. the time‐at‐risk (TaR). We propose a forecasting procedure for VaR and TaR for each trade or other market microstructure event. Subsequently, we perform a backtesting procedure specifically designed to assess the validity of the VaR and TaR forecasts on irregularly spaced data. The performance of the HFR measure is illustrated in an empirical application for two stocks (Bank of America and Microsoft) and an exchange‐traded fund based on Standard & Poor's 500 index. We show that the intraday HFR forecasts capture accurately the volatility and duration dynamics for these three assets. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
The variance of a portfolio can be forecast using a single index model or the covariance matrix of the portfolio. Using univariate and multivariate conditional volatility models, this paper evaluates the performance of the single index and portfolio models in forecasting value‐at‐risk (VaR) thresholds of a portfolio. Likelihood ratio tests of unconditional coverage, independence and conditional coverage of the VaR forecasts suggest that the single‐index model leads to excessive and often serially dependent violations, while the portfolio model leads to too few violations. The single‐index model also leads to lower daily Basel Accord capital charges. The univariate models which display correct conditional coverage lead to higher capital charges than models which lead to too many violations. Overall, the Basel Accord penalties appear to be too lenient and favour models which have too many violations. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
7.
Reliable correlation forecasts are of paramount importance in modern risk management systems. A plethora of correlation forecasting models have been proposed in the open literature, yet their impact on the accuracy of value‐at‐risk calculations has not been explicitly investigated. In this paper, traditional and modern correlation forecasting techniques are compared using standard statistical and risk management loss functions. Three portfolios consisting of stocks, bonds and currencies are considered. We find that GARCH models can better account for the correlation's dynamic structure in the stock and bond portfolios. On the other hand, simpler specifications such as the historical mean model or simple moving average models are better suited for the currency portfolio. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
8.
Estimation of the value at risk (VaR) requires prediction of the future volatility. Whereas this is a simple task in ARCH and related models, it becomes much more complicated in stochastic volatility (SV) processes where the volatility is a function of a latent variable that is not observable. In-sample (present and past values) and out-of-sample (future values) predictions of that unobservable variable are thus necessary. This paper proposes singular spectrum analysis (SSA), which is a fully nonparametric technique that can be used for both purposes. A combination of traditional forecasting techniques and SSA is also considered to estimate the VaR. Their performance is assessed in an extensive Monte Carlo and with an application to a daily series of S&P500 returns. 相似文献
9.
Accurate modelling of volatility (or risk) is important in finance, particularly as it relates to the modelling and forecasting of value‐at‐risk (VaR) thresholds. As financial applications typically deal with a portfolio of assets and risk, there are several multivariate GARCH models which specify the risk of one asset as depending on its own past as well as the past behaviour of other assets. Multivariate effects, whereby the risk of a given asset depends on the previous risk of any other asset, are termed spillover effects. In this paper we analyse the importance of considering spillover effects when forecasting financial volatility. The forecasting performance of the VARMA‐GARCH model of Ling and McAleer (2003), which includes spillover effects from all assets, the CCC model of Bollerslev (1990), which includes no spillovers, and a new Portfolio Spillover GARCH (PS‐GARCH) model, which accommodates aggregate spillovers parsimoniously and hence avoids the so‐called curse of dimensionality, are compared using a VaR example for a portfolio containing four international stock market indices. The empirical results suggest that spillover effects are statistically significant. However, the VaR threshold forecasts are generally found to be insensitive to the inclusion of spillover effects in any of the multivariate models considered. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
10.
Theo Berger 《Journal of forecasting》2016,35(5):419-433
We transform financial return series into its frequency and time domain via wavelet decomposition to separate short‐run noise from long‐run trends and assess the relevance of each frequency to value‐at‐risk (VaR) forecast. Furthermore, we analyze financial assets in calm and turmoil market times and show that daily 95% VaR forecasts are mainly driven by the volatility that is captured by the first scales comprising the short‐run information, whereas more timescales are needed to adequately forecast 99% VaR. As a result, individual timescales linked via copulas outperform classical parametric VaR approaches that incorporate all information available. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
Guangying Liu;Ziyan Zhuang;Min Wang; 《Journal of forecasting》2024,43(5):1356-1373
Volatility forecasting from high-frequency data plays a crucial role in many financial fields, such as risk management, option pricing, and portfolio management. Many existing statistical models could better describe and forecast the characteristics of volatility, whereas they do not simultaneously account for the long-term memory of volatility, the nonlinear characteristics of high-frequency data, and technical index information during the modeling phase. The purpose of this paper is to use the prediction advantage of deep learning long short-term memory (LSTM) model to predict the volatility fusing three classes of information, that is, high frequency realized volatility (H), technical indicators (I), and the parameters of generalized autoregression conditional heteroskedasticity(GARCH), heterogeneous autoregressive (HAR), and c, resulting in a novel LSTM-HIT model to forecast realized volatility. We employ the extreme value theory (EVT) of a semiparametric method to estimate the quantile of standardized return and construct the LSTM-HIT-EVT model to forecast the value at risk (VaR). Empirical results show that the LSTM-HIT model provides the most accurate volatility forecast among the various considered models and that the LSTM-HIT-EVT model yields forecasts more accurate than other VaR models. 相似文献
12.
13.
We develop Hawkes models in which events are triggered through self‐excitation as well as cross‐excitation. We examine whether incorporating cross‐excitation improves the forecasts of extremes in asset returns compared to only self‐excitation. The models are applied to US stocks, bonds and dollar exchange rates. We predict the probability of crashes in the series and the value at risk (VaR) over a period that includes the financial crisis of 2008 using a moving window. A Lagrange multiplier test suggests the presence of cross‐excitation for these series. Out‐of‐sample, we find that the models that include spillover effects forecast crashes and the VaR significantly more accurately than the models without these effects. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
In this paper, we investigate the performance of a class of M‐estimators for both symmetric and asymmetric conditional heteroscedastic models in the prediction of value‐at‐risk. The class of estimators includes the least absolute deviation (LAD), Huber's, Cauchy and B‐estimator, as well as the well‐known quasi maximum likelihood estimator (QMLE). We use a wide range of summary statistics to compare both the in‐sample and out‐of‐sample VaR estimates of three well‐known stock indices. Our empirical study suggests that in general Cauchy, Huber and B‐estimator have better performance in predicting one‐step‐ahead VaR than the commonly used QMLE. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
15.
This paper provides clear‐cut evidence that the out‐of‐sample VaR (value‐at‐risk) forecasting performance of alternative parametric volatility models, like EGARCH (exponential general autoregressive conditional heteroskedasticity) or GARCH, and Markov regime‐switching models, can be considerably improved if they are combined with skewed distributions of asset return innovations. The performance of these models is found to be similar to that of the EVT (extreme value theory) approach. The performance of the latter approach can also be improved if asset return innovations are assumed to be skewed distributed. The performance of the Markov regime‐switching model is considerably improved if this model allows for EGARCH effects, for all different volatility regimes considered. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Michael McAleer Juan‐Angel Jimenez‐Martin Teodosio Pérez‐Amaral 《Journal of forecasting》2010,29(7):617-634
Under the Basel II Accord, banks and other authorized deposit‐taking institutions (ADIs) have to communicate their daily risk estimates to the monetary authorities at the beginning of the trading day, using a variety of value‐at‐risk (VaR) models to measure risk. Sometimes the risk estimates communicated using these models are too high, thereby leading to large capital requirements and high capital costs. At other times, the risk estimates are too low, leading to excessive violations, so that realized losses are above the estimated risk. In this paper we analyze the profit‐maximizing problem of an ADI subject to capital requirements under the Basel II Accord as ADIs have to choose an optimal VaR reporting strategy that minimizes daily capital charges. Accordingly, we suggest a dynamic communication and forecasting strategy that responds to violations in a discrete and instantaneous manner, while adapting more slowly in periods of no violations. We apply the proposed strategy to Standard & Poor's 500 Index and show there can be substantial savings in daily capital charges, while restricting the number of violations to within the Basel II penalty limits. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
17.
Bayesian methods for assessing the accuracy of dynamic financial value‐at‐risk (VaR) forecasts have not been considered in the literature. Such methods are proposed in this paper. Specifically, Bayes factor analogues of popular frequentist tests for independence of violations from, and for correct coverage of a time series of, dynamic quantile forecasts are developed. To evaluate the relevant marginal likelihoods, analytic integration methods are utilized when possible; otherwise multivariate adaptive quadrature methods are employed to estimate the required quantities. The usual Bayesian interval estimate for a proportion is also examined in this context. The size and power properties of the proposed methods are examined via a simulation study, illustrating favourable comparisons both overall and with their frequentist counterparts. An empirical study employs the proposed methods, in comparison with standard tests, to assess the adequacy of a range of forecasting models for VaR in several financial market data series. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
Dimitrios P. Louzis Spyros Xanthopoulos‐Sisinis Apostolos P. Refenes 《Journal of forecasting》2013,32(6):561-576
This paper assesses the informational content of alternative realized volatility estimators, daily range and implied volatility in multi‐period out‐of‐sample Value‐at‐Risk (VaR) predictions. We use the recently proposed Realized GARCH model combined with the skewed Student's t distribution for the innovations process and a Monte Carlo simulation approach in order to produce the multi‐period VaR estimates. Our empirical findings, based on the S&P 500 stock index, indicate that almost all realized and implied volatility measures can produce statistically and regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting results in terms of regulatory accuracy and Basel II compliance. However, robust realized volatility measures, which are immune against microstructure noise bias or price jumps, generate superior VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and the Basel II regulatory capital. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
The paper derives the scalar special case of the well‐known BEKK multivariate GARCH model using a multivariate extension of the random coefficient autoregressive (RCA) model. This representation establishes the relevant structural and asymptotic properties of the scalar BEKK model using the theoretical results available in the literature for general multivariate GARCH. Sufficient conditions for the (direct) DCC model to be consistent with a scalar BEKK representation are established. Moreover, an indirect DCC model that is consistent with the scalar BEKK representation is obtained, and is compared with the direct DCC model using an empirical example. The paper shows, within an asset allocation and risk measurement framework, that the two models are similar in terms of providing parameter estimates and forecasting value‐at‐risk thresholds for equally weighted and minimum variance portfolios. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
20.
We propose a simple and flexible framework for forecasting the joint density of asset returns. The multinormal distribution is augmented with a polynomial in (time‐varying) non‐central co‐moments of assets. We estimate the coefficients of the polynomial via the method of moments for a carefully selected set of co‐moments. In an extensive empirical study, we compare the proposed model with a range of other models widely used in the literature. Employing a recently proposed as well as standard techniques to evaluate multivariate forecasts, we conclude that the augmented joint density provides highly accurate forecasts of the ‘negative tail’ of the joint distribution. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献