首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Q Xu  G Mellitzer  V Robinson  D G Wilkinson 《Nature》1999,399(6733):267-271
The restriction of intermingling between specific cell populations is crucial for the maintenance of organized patterns during development. A striking example is the restriction of cell mixing between segments in the insect epidermis and the vertebrate hindbrain that may enable each segment to maintain a distinct identity. In the hindbrain, this is a result of different adhesive properties of odd- and even-numbered segments (rhombomeres), but an adhesion molecule with alternating segmental expression has not been found. However, blocking experiments suggest that Eph-receptor tyrosine kinases may be required for the segmental restriction of cells. Eph receptors and their membrane-bound ligands, ephrins, are expressed in complementary rhombomeres and, by analogy with their roles in axon pathfinding, could mediate cell repulsion at boundaries. Remarkably, transmembrane ephrins can themselves transduce signals, raising the possibility that bi-directional signalling occurs between adjacent ephrin- and Eph-receptor-expressing cells. We report here that mosaic activation of Eph receptors leads to sorting of cells to boundaries in odd-numbered rhombomeres, whereas mosaic activation of ephrins results in sorting to boundaries in even-numbered rhombomeres. These data implicate Eph receptors and ephrins in the segmental restriction of cell intermingling.  相似文献   

2.
M Shankland 《Nature》1984,307(5951):541-543
Segmented animals are divided into a longitudinal array of developmentally homologous subunits known as metameres. The embryonic origin of the segmental body plan has been studied in a variety of organisms, with particular emphasis on the mechanisms underlying the delineation of the individual metameres and their secondary diversification. I have examined the embryonic events which determine the total number of segments in the glossiphoniid leech Helobdella triserialis. The germinal band of the leech consists of chains of segmental founder cells, called blast cells, and is normally reduced to 32 segments by the degeneration of supernumerary blast cells located at its caudal end. By using a novel technique for selective cell ablation, the segmental register of the four ectodermal cell lines can be altered so that lineally identifiable blast cells take part in the formation of ectopic segments. I show here that the survival or death of ectodermal blast cells is determined by position independent of their cell lineage identities, implying that the final number of segments is imposed on the ectoderm by interactions with the other embryonic tissues.  相似文献   

3.
Siekmann AF  Lawson ND 《Nature》2007,445(7129):781-784
Recent evidence indicates that growing blood-vessel sprouts consist of endothelial cells with distinct cell fates and behaviours; however, it is not clear what signals determine these sprout cell characteristics. Here we show that Notch signalling is necessary to restrict angiogenic cell behaviour to tip cells in developing segmental arteries in the zebrafish embryo. In the absence of the Notch signalling component Rbpsuh (recombining binding protein suppressor of hairless) we observed excessive sprouting of segmental arteries, whereas Notch activation suppresses angiogenesis. Through mosaic analysis we find that cells lacking Rbpsuh preferentially localize to the terminal position in developing sprouts. In contrast, cells in which Notch signalling has been activated are excluded from the tip-cell position. In vivo time-lapse analysis reveals that endothelial tip cells undergo a stereotypical pattern of proliferation and migration during sprouting. In the absence of Notch, nearly all sprouting endothelial cells exhibit tip-cell behaviour, leading to excessive numbers of cells within segmental arteries. Furthermore, we find that flt4 (fms-related tyrosine kinase 4, also called vegfr3) is expressed in segmental artery tip cells and becomes ectopically expressed throughout the sprout in the absence of Notch. Loss of flt4 can partially restore normal endothelial cell number in Rbpsuh-deficient segmental arteries. Finally, loss of the Notch ligand dll4 (delta-like 4) also leads to an increased number of endothelial cells within segmental arteries. Together, these studies indicate that proper specification of cell identity, position and behaviour in a developing blood-vessel sprout is required for normal angiogenesis, and implicate the Notch signalling pathway in this process.  相似文献   

4.
5.
Human subtelomeres are polymorphic patchworks of interchromosomal segmental duplications at the ends of chromosomes. Here we provide evidence that these patchworks arose recently through repeated translocations between chromosome ends. We assess the relative contribution of the principal mechanisms of ectopic DNA repair to the formation of subtelomeric duplications and find that non-homologous end-joining predominates. Once subtelomeric duplications arise, they are prone to homology-based sequence transfers as shown by the incongruent phylogenetic relationships of neighbouring sections. Interchromosomal recombination of subtelomeres is a potent force for recent change. Cytogenetic and sequence analyses reveal that pieces of the subtelomeric patchwork have changed location and copy number with unprecedented frequency during primate evolution. Half of the known subtelomeric sequence has formed recently, through human-specific sequence transfers and duplications. Subtelomeric dynamics result in a gene duplication rate significantly higher than the genome average and could have both advantageous and pathological consequences in human biology. More generally, our analyses suggest an evolutionary cycle between segmental polymorphisms and genome rearrangements.  相似文献   

6.
Morimoto M  Takahashi Y  Endo M  Saga Y 《Nature》2005,435(7040):354-359
The serially segmented (metameric) structures of vertebrates are based on somites that are periodically formed during embryogenesis. A 'clock and wavefront' model has been proposed to explain the underlying mechanism of somite formation, in which the periodicity is generated by oscillation of Notch components (the clock) in the posterior pre-somitic mesoderm (PSM). This temporal periodicity is then translated into the segmental units in the 'wavefront'. The wavefront is thought to exist in the anterior PSM and progress backwards at a constant rate; however, there has been no direct evidence as to whether the levels of Notch activity really oscillate and how such oscillation is translated into a segmental pattern in the anterior PSM. Here, we have visualized endogenous levels of Notch1 activity in mice, showing that it oscillates in the posterior PSM but is arrested in the anterior PSM. Somite boundaries formed at the interface between Notch1-activated and -repressed domains. Genetic and biochemical studies indicate that this interface is generated by suppression of Notch activity by mesoderm posterior 2 (Mesp2) through induction of the lunatic fringe gene (Lfng). We propose that the oscillation of Notch activity is arrested and translated in the wavefront by Mesp2.  相似文献   

7.
S B Selleck  C Gonzalez  D M Glover  K White 《Nature》1992,355(6357):253-255
In the newly cellularized Drosophila embryo, progress through the cell cycle is regulated at the G2-M transition. We have examined cell-cycle regulation later in Drosophila development, in a group of postembryonic neuronal precursors. The S-phase precursor cells, which generate photoreceptor target neurons (lamina neurons) in the central nervous system, are not present in the absence of photoreceptor innervation. Here we report that axons selectively approach G1-phase precursors. Without axon ingrowth, lamina precursors do not enter their final S phase and by several criteria, arrest in the preceding G1 phase. These findings provide evidence that at this stage in development the control of cell division can occur at the G1-S transition.  相似文献   

8.
A W Mudge 《Nature》1984,309(5966):367-369
Cell-cell interactions are thought to play a crucial part in determining the developmental fate of vertebrate cells and regulating their subsequent differentiation. In the peripheral nervous system, for example, signals from neuronal axons determine whether or not some Schwann cells wrap their plasma membrane concentricially around the axon to form a myelin sheath. Moreover, there is some evidence that the interactions between Schwann cells and neurones are not all one way: for example, Schwann cells are thought to provide signals for neuronal sprouting and regeneration. However, there are no clear examples in which Schwann cells have been shown to influence the normal development of neurones. Here I have used purified populations of embryonic sensory neurones and Schwann cells to demonstrate that Schwann cells have a dramatic influence on the development of these neurones. In the presence of Schwann cells, but not other cell types, the sensory neurones undergo a morphological transformation from an immature bipolar form to a mature pseudo-unipolar form. This provides a striking example of the importance of glial cells for neuronal development.  相似文献   

9.
Segmental patterns of neuronal development in the chick hindbrain   总被引:21,自引:0,他引:21  
A Lumsden  R Keynes 《Nature》1989,337(6206):424-428
Identification of specific neuronal populations and their projections in the developing hindbrain reveals a segmental organization in which pairs of metameric epithelial units cooperate to generate the repeating sequence of cranial branchiomotor nerves. Neurogenesis also follows a two-segment repeat, suggesting parallels with insect pattern formation.  相似文献   

10.
We present a global comparison of differences in content of segmental duplication between human and chimpanzee, and determine that 33% of human duplications (> 94% sequence identity) are not duplicated in chimpanzee, including some human disease-causing duplications. Combining experimental and computational approaches, we estimate a genomic duplication rate of 4-5 megabases per million years since divergence. These changes have resulted in gene expression differences between the species. In terms of numbers of base pairs affected, we determine that de novo duplication has contributed most significantly to differences between the species, followed by deletion of ancestral duplications. Post-speciation gene conversion accounts for less than 10% of recent segmental duplication. Chimpanzee-specific hyperexpansion (> 100 copies) of particular segments of DNA have resulted in marked quantitative differences and alterations in the genome landscape between chimpanzee and human. Almost all of the most extreme differences relate to changes in chromosome structure, including the emergence of African great ape subterminal heterochromatin. Nevertheless, base per base, large segmental duplication events have had a greater impact (2.7%) in altering the genomic landscape of these two species than single-base-pair substitution (1.2%).  相似文献   

11.
以广州地铁六号线为工程背景,对高架区间的预制节段箱梁进行孔道摩阻测试,总结以往孔道摩阻的试验方法,介绍了本次摩阻试验的方法,分析了孔道摩阻数据,得出实际的摩阻系数和偏差系数,修正桥梁电算的模型,使计算结果更能符合实际,同时也为同类桥梁的设计参数提供参考.  相似文献   

12.
V T Oi  T M Vuong  R Hardy  J Reidler  J Dangle  L A Herzenberg  L Stryer 《Nature》1984,307(5947):136-140
Mouse monoclonal anti-dansyl antibodies with the same antigen-binding sites but different heavy chain constant regions were generated. The extent of segmental flexibility in times of nanoseconds and the capacity to fix complement were greatest for IgG2b, intermediate for IgG2a, and least for IgG1 and IgE. Hence, the effector functions of immunoglobulin isotypes may be controlled in part by the freedom of movement of their Fab arms.  相似文献   

13.
针对预应力混凝土箱梁桥施工质量不易保证的问题,提出梁端预制拼接的施工方法,采用精细化加工的箱梁锚固端节段,通过剪力键与混凝土箱梁的现浇节段纵向拼接,从而避免由于施工原因造成的预应力箱梁桥长期性能退化。作为拼接箱梁桥受力的关键构件,梁端承受剪力作用的结合面的受力最为不利,因此本文采用足尺模型试验和有限元计算的方法,对新型节段拼接混凝土箱梁桥抗剪性能进行研究。试验、有限元计算和参数分析结果表明,所建立的有限元模型能较好地模拟节段拼接箱梁桥在试验荷载作用下的抗剪性能;带剪力键的箱梁节段结合面是该类型桥梁受力最薄弱的部位;试验模型在试验荷载的作用下,其主要破坏模式是在箱梁节段之间传递剪力的剪力键发生破坏;桥梁抗剪极限承载力与剪力键尺寸成正比,与腹板剪力键和顶板剪力键的数量成正比,但与底板剪力键的数量关系不大。  相似文献   

14.
J E Johnson  S J Birren  D J Anderson 《Nature》1990,346(6287):858-861
In vertebrates, the peripheral nervous system is embryologically derived from the neural crest. Although the earliest neural crest cells seem to be multipotent, the molecular mechanisms responsible for the restriction of these cells to different sublineages are not understood. We therefore searched for developmental control genes expressed in crest cells or their derivatives. One important class of regulatory molecules comprises proteins with common DNA-binding and dimerization domains, the basic helix-loop-helix (B-HLH) region. Members of this family include MyoD, a mammalian myogenic determination molecule, and proteins encoded by genes of the achaete-scute complex of Drosophila, which have an important role in neuronal determination. From a sympathetic neuronal precursor cell line derived from the neural crest we have now isolated two different mammalian genes that are homologous to genes of the achaete-scute complex. The sequence of the B-HLH-encoding region of these genes is more similar to that of the genes of the achaete-scute complex than it is to that of other, mammalian members of the B-HLH family. At least one of these genes is transiently expressed in the embryonic rat nervous system, is not detected in non-neuronal tissues or cell lines, and is induced by nerve growth factor in PC12 cells.  相似文献   

15.
Eph receptors and ephrins restrict cell intermingling and communication.   总被引:25,自引:0,他引:25  
G Mellitzer  Q Xu  D G Wilkinson 《Nature》1999,400(6739):77-81
Eph proteins are receptors with tyrosine-kinase activity which, with their ephrin ligands, mediate contact-dependent cell interactions that are implicated in the repulsion mechanisms that guide migrating cells and neuronal growth cones to specific destinations. Ephrin-B proteins have conserved cytoplasmic tyrosine residues that are phosphorylated upon interaction with an EphB receptor, and may transduce signals that regulate a cellular response. Because Eph receptors and ephrins have complementary expression in many tissues during embryogenesis, bidirectional activation of Eph receptors and ephrin-B proteins could occur at interfaces of their expression domains, for example at segment boundaries in the vertebrate hindbrain. Previous work has implicated Eph receptors and ephrin-B proteins in the restriction of cell intermingling between hindbrain segments. We therefore analysed whether complementary expression of Eph receptors and ephrins restricts cell intermingling, and whether this requires bidirectional or unidirectional signalling. Here we report that bidirectional but not unidirectional signalling restricts the intermingling of adjacent cell populations, whereas unidirectional activation is sufficient to restrict cell communication through gap junctions. These results reveal that Eph receptors and ephrins regulate two aspects of cell behaviour that can stabilize a distinct identity of adjacent cell populations.  相似文献   

16.
During vertebrate development, the specification of distinct cell types is thought to be controlled by inductive signals acting at different concentration thresholds. The degree of receptor activation in response to these signals is a known determinant of cell fate, but the later steps at which graded signals are converted into all-or-none distinctions in cell identity remain poorly resolved. In the ventral neural tube, motor neuron and interneuron generation depends on the graded activity of the signalling protein Sonic hedgehog (Shh). These neuronal subtypes derive from distinct progenitor cell populations that express the homeodomain proteins Nkx2.2 or Pax6 in response to graded Shh signalling. In mice lacking Pax6, progenitor cells generate neurons characteristic of exposure to greater Shh activity. However, Nkx2.2 expression expands dosally in Pax6 mutants, raising the possibility that Pax6 controls neuronal pattern indirectly. Here we provide evidence that Nkx2.2 has a primary role in ventral neuronal patterning. In Nkx2.2 mutants, Pax6 expression is unchanged but cells undergo a ventral-to-dorsal transformation in fate and generate motor neurons rather than interneurons. Thus, Nkx2.2 has an essential role in interpreting graded Shh signals and selecting neuronal identity.  相似文献   

17.
P H Taghert  C Q Doe  C S Goodman 《Nature》1984,307(5947):163-165
The embryonic development of the central nervous system (CNS) involves the generation of an enormous diversity of cellular types arranged and interconnected in a remarkably precise pattern. In each hemisegment of the grasshopper embryo, the ectoderm generates a stereotyped pattern of 30 neuronal precursor cells, called neuroblasts (Fig. 1). Each of these stem cells makes a stereotyped contribution of 6-100 progeny to the approximately 1,000 different neurones, each cell identifiable according to its unique morphology, physiology and biochemistry. What are the contributions of cell interactions and cell lineage to the generation of this diversity and specificity of identified neurones in the grasshopper CNS? Here we report on cell ablations with a laser microbeam at different stages of development. Our results suggest the importance of cell-cell interactions in the determination of ectodermal cells to become identified neuroblasts. However, once a neuroblast begins to divide, then cell lineage appears to play an important role in the determination of its stereotyped family of neuronal progeny. Furthermore, cell-specific interactions continue to play an important role as neurones, according to their mitotic ancestry, recognize and interact with other differentiating neurones in their environment.  相似文献   

18.
Retinoblastoma--origin from a primitive neuroectodermal cell?   总被引:8,自引:0,他引:8  
A P Kyritsis  M Tsokos  T J Triche  G J Chader 《Nature》1984,307(5950):471-473
The histogenesis of retinoblastoma, the most common intraocular neoplasm of childhood, remains controversial. Previous studies have attributed the origin of the tumour to neuronal, glial or primitive stem cells of retina. In the study described here we have used immunofluorescence to search for the presence of a neuronal marker, neurone-specific enolase (NSE) and a glial marker, glial fibrillary acidic protein (GFAP), in the cells of the human retinoblastoma line Y-79 (ref. 4), before and after successful differentiation into neuronal and glial-like cells. We found that all undifferentiated cells contain both NSE and GFAP, whereas the differentiating neuronal and glial-like cells gradually lose one marker and selectively express the marker that correlates with their morphology. Our results support the notion that retinoblastoma originates from a primitive bipotential (or multipotential) neuroectodermal cell.  相似文献   

19.
Sortilin (approximately 95 kDa) is a member of the recently discovered family of Vps10p-domain receptors, and is expressed in a variety of tissues, notably brain, spinal cord and muscle. It acts as a receptor for neurotensin, but predominates in regions of the nervous system that neither synthesize nor respond to this neuropeptide, suggesting that sortilin has additional roles. Sortilin is expressed during embryogenesis in areas where nerve growth factor (NGF) and its precursor, proNGF, have well-characterized effects. These neurotrophins can be released by neuronal tissues, and they regulate neuronal development through cell survival and cell death signalling. NGF regulates cell survival and cell death via binding to two different receptors, TrkA and p75NTR (ref. 10). In contrast, proNGF selectively induces apoptosis through p75NTR but not TrkA. However, not all p75NTR-expressing cells respond to proNGF, suggesting that additional membrane proteins are required for the induction of cell death. Here we report that proNGF creates a signalling complex by simultaneously binding to p75NTR and sortilin. Thus sortilin acts as a co-receptor and molecular switch governing the p75NTR-mediated pro-apoptotic signal induced by proNGF.  相似文献   

20.
K R Hinds  G W Litman 《Nature》1986,320(6062):546-549
In mammals, the immunoglobulin heavy-chain variable region (VH) locus is organized in a linear fashion; individual VH, diversity (DH), joining (JH) and constant (CH) region segments are linked in separate regions. During somatic development, coding segments flanked by characteristic short recombination signal sequences, separated by intervening sequence regions that may exceed 2,000 kilobases (kb), are recombined. Combinatorial joining of different segments as well as imprecision in this process contribute to the diversity of the primary antibody response; subsequent mutation further alters functionally rearranged genes. This basic somatic reorganization mechanism is shared by six major families of genes encoding antigen receptors. Previously, we have shown that multiple germline genes and mammalian-like recombination signal sequences are associated with the VH gene family of Heterodontus francisci (horned shark), a primitive elasmobranch. Studies presented here demonstrate that segmental reorganization involving mammalian-like DH and JH segments occurs in the lymphoid tissues of this species. In marked contrast to the mammalian system, we find multiple instances of close linkage (approximately 10 kb) between individual VH, DH, JH, and CH segments. This unique organization may limit combinatorial joining and be a factor in the restricted antibody response of this lower vertebrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号