首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E O Long  J Gorski  B Mach 《Nature》1984,310(5974):233-235
The major histocompatibility complex (MHC) regulates several aspects of the immune response. Class II antigens of the MHC control cellular interactions between lymphocytes. In man, at least three class II antigens (DR, DC and SB), consisting of distinct alpha- and beta-chains, are encoded in the HLA complex. Sequence analysis has established that the DR and DC antigens are the respective structural counterparts of the murine I-E and I-A antigens. Molecular cloning of the SB beta-chain gene has now enabled us to define its relationship to other class II genes. The DR, DC and SB beta genes have diverged from each other to the same extent. In murine DNA and in cloned genes from the I region, the best hybridization of SB beta DNA is with the E beta 2 sequence. E beta 2 may belong to a complete gene (E' beta) because first domain sequences were found adjacent to it.  相似文献   

2.
D A Hardy  J I Bell  E O Long  T Lindsten  H O McDevitt 《Nature》1986,323(6087):453-455
The class II region of the human major histocompatibility complex (MHC) encodes a polymorphic set of cell surface glycoproteins involved in the regulation of the immune response. Each glycoprotein is a heterodimer composed of a alpha-chain of relative molecular mass (Mr) 34,000 (34 K) and a beta-chain of Mr = 28K. The products of the class II region have been characterized by the mixed lymphocyte reaction, serology, primed lymphocyte typing and DNA cloning. DR, DQ and DP, three subregions containing both alpha- and beta-chains, and two additional loci, DZ alpha and DO beta, locate this gene cluster on the short arm of chromosome 6. The precise genomic organization of these loci have been difficult to determine. Here we describe the use of pulsed-field gel electrophoresis together with restriction endonucleases having few genomic restriction sites and Southern blotting, to determine the order of the subregions and to derive a map for the human class II region. The order of these loci is similar to that of the homologous loci in the murine class II region. Our study establishes the use of pulsed-field gel electrophoresis in mapping large regions of the genome in higher eukaryotes.  相似文献   

3.
H C Chang  T Moriuchi  J Silver 《Nature》1983,305(5937):813-815
The HLA-D region of the major histocompatibility complex (MHC) of man encodes polymorphic glycoproteins found predominantly on the cell surfaces of B cells and macrophages. These proteins mediate interactions, required for the induction of immune responses, among cells of the immune system and consequently are referred to as Ia (immune-response associated). Two families of Ia molecules, DR and DS (also known as DC), have been defined, the former analogous to the I-E (ref. 1) and the latter to the I-A molecules of the murine MHC. Both DR and DS molecules consist of two noncovalently associated polypeptide chains with molecular weights of 33,000 and 28,000, designated alpha and beta, respectively. The polymorphism of DR molecules is due to structural variation in the small subunit, DR beta, with the large subunit, DR alpha, being constant in structure. In contrast, both subunits DS alpha and DS beta are structurally variable when DS allotypes are compared. We have now isolated a cDNA clone from a DR7 cell line that contains the entire coding sequence for the DS alpha subunit and have compared its predicted amino acid sequence with that previously deduced from a DS alpha cDNA clone isolated from a DR4,w6 cell line. This comparison reveals that 10 of 11 amino acid differences are located within the alpha 1 (N-terminal) domain and that the alpha 2 or immunoglobulin-like domains are identical.  相似文献   

4.
DNA sequences of four human class II histocompatibility antigen alpha chain DNA sequences (derived from cDNA and genomic clones representing DC1 alpha, DC4 alpha, DX alpha and SB alpha) are presented and compared to DR alpha and to mouse I-A alpha and I-E alpha sequences. These data suggest possible mechanisms for the generation of polymorphism and the evolution of the DR, DC and SB families.  相似文献   

5.
Structural and evolutionary analysis of HLA-D-region products   总被引:4,自引:0,他引:4  
The major histocompatibility complex (MHC)--HLA in man and H-2 in mouse--encodes two classes of cell-surface antigens involved in the immune response. The amino acid sequences have been determined for a number of these molecules. Class I antigens, typified by the HLA-ABC antigens, are composed of a 43,000-molecular weight (MW) glycosylated transmembrane polypeptide with three external domains (alpha 1, alpha 2 and alpha 3), of which the one nearest the membrane (alpha 3) is associated with a 12,000-MW nonglycosylated polypeptide, beta 2-microglobulin. The HLA-D-region or class II antigens, DR, DC and SB, are composed of two glycosylated transmembrane polypeptides, of MWs 34,000 (alpha-chain) and 28,000 (beta-chain). Both chains have two external domains which presumably associate with each other, alpha 2, beta 2 being membrane proximal and alpha 1, beta 1 N-terminal and membrane distal. All four membrane-proximal domains (class I alpha 3, beta 2-microglobulin, class II alpha 2 and beta 2) have amino acid sequences that show significant similarities with immunoglobulin constant-region domains. This, together with the similarly placed internal disulphide bonds, suggests they might have an immunoglobulin-like structure (Fig. 1). We have now used computer graphics techniques to predict a detailed three-dimensional structure for the membrane-proximal domains of the class II antigens (alpha 2 and beta 2) based on the known coordinates of immunoglobulin constant domains (Fig. 2). The transmembrane regions of class II antigens have been modelled as two alpha-helices packed together. The proposed structure accounts for conservation of amino acids and leads to evolutionary predictions.  相似文献   

6.
D R Karp  C L Teletski  P Scholl  R Geha  E O Long 《Nature》1990,346(6283):474-476
Several exoproteins from the bacterium Staphylococcus aureus are highly potent polyclonal activators of T cells in the presence of cells bearing class II antigens of the major histocompatibility complex (MHC). These toxins, including the toxic shock syndrome toxin (TSST-1), act at nanomolar concentrations, bind directly to class II molecules, and do not require the processing typical of nominal antigen. Each toxin is capable of stimulating a subpopulation of peripheral T lymphocytes bearing particular V beta sequences as part of their alpha beta T-cell receptors. It is not known how these so-called 'superantigens' bind to class II and how this binding stimulates T cells. In this study, the different affinities of TSST-1 for human class II molecules DR and DP were exploited to define the region of a class II molecule necessary for high-affinity binding. Using chimaeric alpha- and beta-chains of DR and DP expressed at the surface of transfected murine fibroblasts and a binding assay with TSST-1, it was shown that the alpha 1 domain of DR is essential for high-affinity binding, and further that TSST-1 binding did not prevent subsequent binding of a DR-restricted antigenic peptide. This is compatible with a model of superantigen making external contacts with both class II and T cell receptor, and suggests that the V beta portion of the T-cell receptor interacts with the nonpolymorphic alpha-chain of DR.  相似文献   

7.
HLA class II molecules are a highly polymorphic family of dimeric cell-surface proteins primarily involved in regulating T-cell responses to extrinsic antigens. To define regions of class II molecules involved in T-cell recognition, we have now compared sequences of three HLA DR beta cDNA clones obtained from cells that all express the same serologically defined determinants but differ in terms of T-cell-recognized specificities. The comparisons indicate that very few (one to four) nucleotides differ between what are almost certainly alleles of the DR beta 1 locus. All differences were in the first domain of the molecule and all localized to a region from amino acids 71-86. Because all differences were found only in this region of the molecule, and because DR alpha-chains seem to be relatively non-polymorphic, these positions in the DR beta-chain must have a major role in influencing T-cell recognition of the DR molecule.  相似文献   

8.
Coeliac disease is an autoimmune disease of the intestinal mucosa, elicited by ingestion of wheat gluten in genetically susceptible individuals. Susceptibility to coeliac disease has been associated with the serologically defined variants DR3 and DR7 of the class II antigens encoded by the HLA-D region. Three related class II antigens, each consisting of an alpha and a beta glycoprotein chain, have been identified and are designated HLA-DR, HLA-DQ, and HLA-DP. These highly polymorphic transmembrane proteins bind peptides derived from the processing of foreign antigens and present them to T lymphocytes; they also influence the specificity of the mature T-cell repertoire. The role of HLA-DP polymorphism in susceptibility has not been as fully explored as that of the other class II antigens because of the complexity of the primed lymphocyte typing (PLT) method for determining DPw specificities. Here we use a new DNA-based method of HLA-DP typing to analyse the distribution of DP beta alleles in a group of coeliac disease patients and healthy controls. Two specific DP beta alleles (DPB4.2 and DPB3) are increased in the patient population. Comparison of the DP beta sequences suggests that the polymorphic residues at position 69 and at 56 and 57 may be critical in conferring susceptibility. Further, the contribution of the susceptible DP beta alleles appears to be independent of linkage to the previously reported DR3 and DR7 markers for coeliac disease. The distribution of DQ alpha and beta alleles in patients suggests that a specific DQ heterodimer may be responsible for the observed DR associations. Individuals with both this DQ antigen and a specific DP beta allele are at increased risk for coeliac disease.  相似文献   

9.
Isolation of a cDNA clone coding for an SB beta-chain   总被引:1,自引:0,他引:1  
Class II antigens of the major histocompatibility complex (MHC) consist of a family of closely related cell surface-expressed glycoproteins. These antigens, which are genetically polymorphic, control important aspects of the immune response. At least three types of human class II antigens, namely, DR, DC and SB (refs 2-4), have been identified. All class II antigens are heterodimers composed of one alpha- and one beta-chain. The genes for both types of subunits are encompassed within the MHC. The general features of the DC and DR antigens have recently been elucidated. Much less is known, however, about the SB molecules. Here we describe the isolation of a cDNA clone as well as a genomic clone encoding a beta-chain whose amino acid sequence is compatible with the partial amino-terminal sequence of SB beta-chains.  相似文献   

10.
11.
S Wu  T L Saunders  F H Bach 《Nature》1986,324(6098):676-679
Class II molecules encoded by the human major histocompatibility complex (MHC) are involved in regulating T-cell response to antigens. The mechanisms for generating polymorphism in products of the MHC have been studied extensively for both the murine H-2 and the human HLA complex. Such studies indicate that point mutations plus selection have a major role in the generation of polymorphisms of class I and class II MHC genes. However, a non-reciprocal gene conversion mechanism has been proposed to explain several examples of clustered sequence variation in MHC genes. In all these examples, the proposed gene conversion event is unidirectional; that is, one of the two interacting genes acts as sequence donor and the other as sequence recipient. No examples of potential reciprocal genetic exchange (as occurs in the fungal system), in which the two interacting genes act as both donor and recipient of gene fragments, have been found in the MHC system or in other multigene families of higher organisms. We sequenced two different HLA-DR beta complementary DNAs from each of two different cells all expressing the same serologically defined determinant (DR2) but different T-cell-recognized (Dw) specificities (Dw12 and MN2). Sequence comparisons of these four cDNA clones (and two DR beta amino-acid sequences from the DR2-Dw2 subtype) suggest that new coding sequences for DR beta molecules in the DR2 haplotypes are potentially generated by reciprocal intergenic exchange.  相似文献   

12.
J Kaye  S M Hedrick 《Nature》1988,336(6199):580-583
The majority of peripheral T lymphocytes bear cell-surface antigen receptors comprised of a disulphide-linked alpha beta dimer. In an immune response, this receptor endows T cells with specificities for foreign antigenic protein fragments bound to cell surface glycoproteins encoded in the major histocompatibility complex (MHC). At a high frequency (greater than 1%), the same population of T lymphocytes responds to allogeneic MHC glycoproteins, or to differences at other genetic loci termed Mls, in conjunction with MHC. The alpha beta-antigen receptor has been implicated in alloreactivity and Mls reactivity. In fact, many monoclonal T-cell lines recognize a foreign protein fragment bound to self-MHC molecules and, in addition, recognize allogeneic MHC glycoproteins, an Mls-encoded determinant, or both. For at least one T-cell clone, a monoclonal antibody directed against the alpha beta antigen receptor has been shown to block activation induced by either antigen-bound self-MHC or by allogeneic MHC. However, it remains to be demonstrated directly that a single alpha beta receptor can mediate antigen specificity, alloreactivity and Mls reactivity, a prerequisite to understanding the structural basis of these high-frequency cross-reactivities. To address this issue we have performed transfers of receptor chain genes from a multiple-reactive T-cell clone into an unrelated host T lymphocyte. We now demonstrate definitively that the genes encoding a single alpha beta-receptor chain pair can transfer the recognition of self-MHC molecules complexed with fragments of antigen, allogeneic MHC molecules, and an Mls-encoded determinant (presumably in conjunction with MHC). In this case the transfer of antigen specificity and alloreactivity requires a specific alpha beta-receptor chain combination, whereas Mls reactivity can be transferred with the beta-chain gene alone into a recipient expressing a randomly selected alpha-chain.  相似文献   

13.
A Winoto  J L Urban  N C Lan  J Goverman  L Hood  D Hansburg 《Nature》1986,324(6098):679-682
The T-cell receptor is a cell surface heterodimer consisting of an alpha and a beta chain that binds foreign antigen in the context of a cell surface molecule encoded by the major histocompatibility complex (MHC), thus restricting the T-cell response to the surface of antigen presenting cells. The variable (V) domain of the receptor binds antigen and MHC molecules and is composed of distinct regions encoded by separate gene elements--variable (V alpha and V beta), diversity (D beta) and joining (J alpha and J beta)--rearranged and joined during T-cell differentiation to generate contiguous V alpha and V beta genes. T-helper cells, which facilitate T and B cell responses, bind antigen in the context of a class II MHC molecule. The helper T-cell response to cytochrome c in mice is a well-defined model for studying the T-cell response to restricted antigen and MHC determinants. Only mice expressing certain class II molecules can respond to this antigen (Ek alpha Ek beta, Ek alpha Eb beta, Ev alpha Ev beta and Ek alpha Es beta). Most T cells appear to recognize the C-terminal peptide of cytochrome c (residues 81-104 in pigeon cytochrome c). We have raised helper T cells to pigeon cytochrome c or its C-terminal peptide analogues in four different MHC congenic strains of mice encoding each of the four responding class II molecules. We have isolated and sequenced seven V alpha genes and six V beta genes and analysed seven additional helper T cells by Northern blot to compare the structure of the V alpha and V beta gene segments with their antigen and MHC specificities. We have added five examples taken from the literature. These data show that a single V alpha gene segment is responsible for a large part of the response of mice to cytochrome c but there is no simple correlation of MHC restriction with gene segment use.  相似文献   

14.
R N Germain  M A Norcross  D H Margulies 《Nature》1983,306(5939):190-194
The activation of T helper lymphocytes involves the recognition of class II major histocompatibility complex antigens, which are dimeric glycoproteins (of subunit composition A alpha A beta or E alpha E beta) expressed on the surfaces of macrophages and B lymphocytes. One approach to understanding the relationship between the structure of these antigens and their functions in the immune response is to clone the genes that encode them, to obtain functional expression of the cloned genes transfected into an appropriate cell line, and then to see how those functions are affected in variant genes generated in vitro. We report here the expression in Iad-bearing B cells of an Ak beta gene, which confers on the transfected cells the capacity for both allostimulation and antigen-dependent activation of an I-Ak-restricted T-cell clone.  相似文献   

15.
Identification and sequence of a fourth human T cell antigen receptor chain   总被引:2,自引:0,他引:2  
  相似文献   

16.
R L Modlin  M B Brenner  M S Krangel  A D Duby  B R Bloom 《Nature》1987,329(6139):541-545
Cells which can suppress the immune response to an antigen (TS cells) appear to be essential for regulation of the immune system. But the characterization of the TS lineage has not been extensive and many are sceptical of studies using uncloned or hybrid T-cell lines. The nature of the antigen receptor on these cells is unclear. T cells of the helper or cytotoxic lineages appear to recognize their targets using the T-cell receptor (TCR) alpha beta-CD3 complex. TCR beta-gene rearrangements are also found in some murine and human suppressor cell lines but others have been shown not to rearrange or express the beta-chain or alpha-chain genes. We previously established TS clones derived from lepromatous leprosy patients which carry the CD8 antigen and recognize antigen in the context of the major histocompatibility complex (MHC) class II molecules in vitro. We here report the characterization of additional MHC-restricted TS clones which rearrange TCR beta genes, express messenger RNA for the alpha and beta chains of the TCR and express clonally unique CD3-associated TCR alpha beta structures on their cell surface but do not express the gamma chain of the gamma delta TCR on the cell surface. We conclude that antigen recognition by at least some human CD8+ suppressor cells is likely to be mediated by TCR alpha beta heterodimers.  相似文献   

17.
H Nishimoto  H Kikutani  K Yamamura  T Kishimoto 《Nature》1987,328(6129):432-434
The NOD (non-obese diabetic) mouse spontaneously develops insulin-dependent diabetes mellitus (IDDM) characterized by autoimmune insulitis, involving lymphocytic infiltration around and into the islets followed by pancreatic beta (beta) cell destruction, similar to human IDDM. Genetic analysis in breeding studies between NOD and C57BL/6 mice has demonstrated that two recessive genes on independent chromosomes contribute to the development of insulitis. One of the two recessive diabetogenic genes was found to be linked to the major histocompatibility complex (MHC). This is of interest, because the NOD strain has a unique class II MHC: it does not express I-E molecules as no messenger RNA for the alpha-chain of I-E is visible in Northern blot analysis; I-A molecules are not detected with any available monoclonal antibodies or by allo-reactive or autoreactive T-cell clones, although their expression is demonstrated with a conventional antiserum to Ia antigens. To examine whether the unusual expression of class II MHC molecules may be responsible for the development of autoimmune insulitis, we attempted to express I-E molecules in NOD mice selectively, without introducing other genes on chromosome 17 by using I-E-expressing C57BL/6 (B6(E alpha d)) transgenic mice. We report here that the expression of I-E molecules in NOD mice can prevent the development of autoimmune insulitis.  相似文献   

18.
P A Roche  M S Marks  P Cresswell 《Nature》1991,354(6352):392-394
HLA class II molecules are heterodimeric transmembrane glycoproteins that bind and present processed antigenic peptides to CD4-positive T lymphocytes. Intracellularly, class II molecules associate with a third subunit termed the invariant (I) chain. Here we describe the physical characteristics of the intracellular class II alpha beta I complex. Chemical crosslinking, size exclusion chromatography and sedimentation velocity studies demonstrate that the alpha beta I complex is a nine-subunit transmembrane protein that contains three alpha beta dimers associated with an I chain trimer. The organization of class II alpha- and beta-subunits in such a multimer may have a role in the documented ability of the I chain to inhibit peptide binding to class II molecules. In addition, the formation of the nine-chain complex may induce the structural changes necessary to overcome the cytoplasmic retention signal responsible for the localization of free I chain in the endoplasmic reticulum, releasing class II-I chain complexes for transport to endosomes.  相似文献   

19.
The human T-cell receptor alpha-chain gene maps to chromosome 14   总被引:7,自引:0,他引:7  
The T-cell receptor for antigen has been identified as a disulphide-linked heterodimeric glycoprotein of relative molecular mass (Mr) 90,000 comprising an alpha- and a beta-chain. The availability of complementary DNA clones encoding mouse and human beta-chains has allowed a detailed characterization of the genomic organization of the beta-chain gene family and has revealed that functional beta-chain genes in T cells are generated from recombination events involving variable (V), diversity (D), joining (J) and constant (C) gene segments. Recently, cDNA clones encoding mouse and human alpha-chains have been described; the sequences of these clones have indicated that functional alpha-chain genes are also generated from multiple gene segments. It is possible that chromosomal translocations involving T-cell receptor alpha- and beta-chain genes have a role in T-cell neoplasms in much the same way as translocations involving immunoglobulin genes are associated with oncogenic transformation in B cells. In the latter case, the chromosomal localization of the immunoglobulin genes provided one of the first indications of the involvement of such translocations in oncogenic transformation. The chromosomal assignment of the alpha- and beta-chain genes may, therefore, provide equally important clues for T-cell neoplastic transformation. The chromosomal location of the mouse and human beta-chain gene family has been determined: the murine gene lies on chromosome 6 (refs 12, 13) whereas the human gene is located on chromosome 7 (refs 13, 14). Here we use a cDNA clone encoding the human alph-chain to map the corresponding gene to chromosome 14.  相似文献   

20.
Subtractive complementary DNA cloning combined with partial protein sequencing has allowed identification of the genes encoding the alpha and beta subunits of T-cell receptors. The subtractive cDNA library prepared from the cytotoxic T lymphocyte (Tc) clone 2C has been found to contain a third type of clone encoding the gamma chain. The gamma gene shares several features with the alpha and beta genes: (1) assembly from gene segments resembling immunoglobulin V, J and C (respectively variable, joining and constant region) DNA segments; (2) rearrangement and expression in T cells and not in B cells; (3) sequences reminiscent of transmembrane and intracytoplasmic regions of integral membrane proteins; (4) a cysteine residue at the position expected for an interchain disulphide bond. The alpha and beta genes are expressed at equivalent levels in both Tc cells and helper T cells (TH). The gamma gene, obtained from 2C, has been found to be expressed in all Tc cells studied. Here we present evidence that strongly suggests that TH cells do not require gamma gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号