首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
设R∝A是环的扩张。基于任伟对Gorenstein投射模和Frobenius扩张的研究,利用同调代数的方法,讨论了x-Gorenstein投射模与Frobenius扩张,并证明了当R∝A是环的Frobenius扩张且环A的左整体x-Gorenstein投射维数lxGDP(A)∞时,对任意左A-模M有:_AM是x-Gorenstein投射左A-模当且仅当潜在模_RM是■-Gorenstein投射左R-模。  相似文献   

2.
利用投射模的研究方法构造出了CE-内射模的对偶模类CE-投射模,刻画了CE-投射模及其CE-投射维数的一些性质;结论如下:假如F:RM→SM为模范畴的等价函子,G是F的逆函子,则M为R-CE-投射模当且仅当F(RM)为S-CE-投射模;RM在环R上的CE-投射维数与SF(RM)在环上的CE-投射维数是相等的,也即l.CEpd(RM)=l.CEpd(SF(RM)).  相似文献   

3.
在半对偶模的基础上,针对一个模的G_C-投射性在环的优越扩张下是保持的,在已知结论正确的情况下采用不同于以往的证明方法,利用模的G_C-投射性的等价命题证明主要结论,即对于环的优越扩张R→S和S-模SM,R-模RM是一个G_C-投射模当且仅当SM是一个G_(S■RC)-投射模。使用等价命题后采用的新证明方法逻辑清晰,形式统一,便于模的具体相关性质的推广与应用。  相似文献   

4.
设R是环,称左R-模P为FT-投射模,是指对任何有有限投射分解的左R-模M,都有Ext_R~1(P,M)=0.证明R是左自内射环,当且仅当任何左R-模都是FT-投射模.  相似文献   

5.
设R是环,F∞表示平坦维数有限的左R-模类.左R-模M称为∞-余纯投射模,指对任意N∈F∞都有Ext1R(M,N)=0.证明∞-余纯投射模M是投射模当且仅当M∈F∞,同时证明当l.FFD(R)=0时,余纯投射模是∞-余纯投射模.用∞-余纯投射模刻画QF环和CPH环,证明R是QF环当且仅当每一左R-模是∞-余纯投射模,当且仅当每一N∈F∞是内射模.也证明了R是CPH环当且仅当∞-余纯投射左R-模的子模是∞-余纯投射模,当且仅当每一N∈F∞的内射维数不超过1.  相似文献   

6.
环论主要讨论其结构及分类,近年来特别对Gorenstein环的结构与分类以及维数不变量的研究很多,本文在Excellent扩张环上对Gorenstein投射模在两个环上的性质进行了比较.给出结论:若环S是环R的Excellent扩张,则模sM是G-Proj(Gorenstein投射模)的充要条件是sM是G-Proj,且模M作为S模和M模其Gorenstein投射维数相等,即GpdsM=GpdRM.  相似文献   

7.
S-纯投射模     
设R是环,S是有限表示左R-模构成的集表示类且包含R.主要讨论了S-纯投射预覆盖的存在性,在此基础上,研究了S-纯投射模的相关性质.最后,给出了S-纯投射维数的等价刻画.  相似文献   

8.
首先给出右GFPI-封闭环的定义,即称环R是右GFPI-封闭环,如果所有的Gorenstein FP-内射右R-模类关于扩张封闭.证明当R是右凝聚与右GFPI-封闭环时,所有的Gorenstein FP-内射右R-模类是内射可解类.特别地,研究优越扩张环上模的Gorenstein FP-内射性质,证明当R与S是右凝聚环,S是R的优越扩张时,如果M是Gorenstein FP-内射右R-模,则HomR(S,M)是Gorenstein FP-内射右S-模,并且证明如果M是Gorenstein FP-内射右S-模,则M是Gorenstein FP-内射右R-模.另外,当R是右凝聚与右GFPI-封闭环时,给出Gorenstein FP-内射维数的若干等价刻画.  相似文献   

9.
设环扩张R■A是Frobenius扩张,M是左A-模,证明如果左A-模M是Ding投射模,那么左R-模M是Ding投射模.设R■A是可分的Frobenius扩张,证明如果左R-模M是Ding投射模,那么左A-模M是Ding投射模.  相似文献   

10.
设R是交换环,R-模P称为强w-投射模,是指对任意的无挠w-模M,都有Ext1R(P,M)=0.证明了强w-投射模或者是投射模,或者其投射维数不低于2.通过对强w-投射模的讨论,给出了半单环、DW-环和遗传环的新刻画.  相似文献   

11.
设R是交换环,M是R-模.引入了模M的w-投射维数w-pd_R(M)和环R的w-弱finitistic维数w-f PD(R).给出w-f PD(R)=0的充分必要条件.证明了若R是w-凝聚环,M是有限表现R-模,则M有w-投射分解…→P_n→P_(n-1)→…→P_1→P_0→M→0,其中P_i是有限型的w-投射模,这里i=0,1,….最后,证明了若R是w-半遗传环,w-f PD(R)#1.  相似文献   

12.
设R是MFG整环,S表示R的极大理想生成的乘法系.R-模M称为几乎投射模,是指对任何无挠的ε-模N,Ext1R(M,N)是S-挠模.证明了ε-有限生成模M是几乎投射模当且仅当对R的任何次极大素理想P,MP是自由RP-模.同时证明了ε-有限生成的几乎投射模是ε-有限表现模,ε-有限生成的几乎投射的ε-模一定是自反模.  相似文献   

13.
设R是环,R-模M称为余纯投射模,是指对任意平坦模F,都有Ext1R(M,F)=0.证明了余纯投射模或者是投射模,或者其平坦维数不低于2.还引入CPH环的概念,证明了R是CPH环当且仅当平坦模的内射维数不超过1,当且仅当R的每个理想是余纯投射的.  相似文献   

14.
刻画了半完全环上的投射模,同时得到了关于半完全环上投射模的一些结果,如R是一个半完全环,那么每一个投射左R-模的任一不可分解的分解补极大直和项:每个有限生成的投射左R-模是一个非投射模的投射盖,总结和扩张了关于半完全环上的投射模的一些结果。  相似文献   

15.
设(R,m)是交换的Noether局部环,I是R中的理想,M是有限生成的R-模.给出了I-投射模的定义及M是I-投射模的等价条件,讨论了I-投射维数、整体I-投射维数等相关性质.  相似文献   

16.
令C作为R-模为半对偶模,其中R为交换环。在(几乎)优越扩张的条件下研究了与半对偶模C相关模类的传递性,讨论了C-投射,内射及平坦预盖及预包的相关性质。作为应用,证明了当环扩张S≥R为优越扩张时,R为诺特环当且仅当S为诺特环;R为凝聚环当且仅当S为凝聚环。  相似文献   

17.
设M是有限生成的拟投射左R-模,那么End(RM)为半完全环的充要条件是M能分解成模直和:M=M1…Mr,其中每个End(RMi)为局部环;设R为整环,那么,对于任意有限生成的拟投射但非投射的R-模M,End(RM)为半完全环的充要条件是R的Krull维数为1和R的每个理想都有准素分解;设R为Dedekind整环,M是有限生成的扭R-模,那么End(RM)为半完全环。  相似文献   

18.
模M称为P-投射模,是指对任意R-模N的任意循环子模Rx,同态f:M→N/Rx能提升为同态g:M→N.给出了P-投射模的一些新刻划,证明了M是P-投射模当且仅当对任何有限生成模K有Ext1R(M,K)=0当且仅当对R的任何左理想I有Ext1R(M,R/I)=0.并利用P-投射性与f-内射性给出了半单环的新刻划,证明了R是半单环当且仅当每个模是P-投射模当且仅当每个模是f-内射模.最后为了进一步揭示P-投射模的子模的性质,引入了P-遗传环的概念,证明了R是P-遗传环当且仅当有限生成模的内射维数不超过1.  相似文献   

19.
设R是交换环,M是R-模,I是R的有限生成理想,满足∩∞n=0In=0,R^是R的I-adic完备化,M^是M的I-adic完备化.证明了若R是凝聚环,则R^是平坦R-模,且若I(∈)J(R),则R^还是忠实平坦R-模.由此证明了若R^(×)RM是有限生成(有限表现或有限生成投射)的R^-模,则M是有限生成(有限表现或有限生成投射)R-模.最后用Swan的方法证明了若R是凝聚整环,u∈J(R)是素元,∩∞n=0(un)=0,M是不可分解的有限生成投射R-模,则M/uM是不可分解的投射R/(u)-模.  相似文献   

20.
Enochs E和Garcia Rozas J R在"Gorenstein Injective and Projective Complexes"一文中证明了在n-Gorenstein环R上,若左R-模复形C为Gorenstein投射复形当且仅当它的每一项左R-模Cm为Gorenstein投射模。弱化了此结论的必要性条件,得到在任意环R上,若左R-模复形C为Gorenstein投射复形,则它的每一项左R-模Cm为Gorenstein投射模。并且最后给出Gorenstein投射复形C与任意投射复形上合冲L的关系,即Exti(C,L)=0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号